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ABSTRACT

Background: Use Case Points (UCPs) have been widely used to esti-
mate software size for object-oriented projects. Yet, many research
papers criticize the UCPs methodology for not being verified and
validated with data, leading to inaccurate size estimates.

Aims: This paper explores the use of Bayesian analysis to calibrate
the use case complexity weights of the UCPs method to improve
software size and project effort estimation accuracy.

Method: Bayesian analysis is applied to integrate prior informa-
tion (in this study, the weights defined by the UCPs method and
suggested by other research papers) with parameter values sug-
gested by multiple linear regression on the data. To validate the
effectiveness of this approach, we run the Bayesian-inspired anal-
ysis on projects implemented by master’s students at University
of Southern California and a public dataset retrieved from Zenodo
repository, and compared its performance with three other typical
size estimation methods: a priori, original UCPs, and regression
methods. To test the approach in a heterogeneous environment, we
also run the analysis on the combination of the student projects
and the public dataset.

Results: The Bayesian method outperforms the a priori, original
UCPs, and regression methods by 13.4%, 15.9%, and 15.9% respec-
tively in terms of PRED(.25), and by 16.8%, 16.9%, and 17.8% respec-
tively in terms of MMRE for the student projects. The PRED(.25)
and MMRE results similarly improved for the public and the com-
bined datasets.

Conclusions: The results show that the Bayesian estimates of the
use case complexity weights consistently provide better estimation
accuracy, compared to the weights proposed by the original UCPs
method, the weights calibrated by multiple linear regression, and
the weights suggested in previous research papers.

CCS CONCEPTS

- Software and its engineering — Software development pro-
cess management;
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1 INTRODUCTION

Effort estimation has been regarded as a crucial driver for various
software managerial decisions. For example, accurate project effort
estimates at the early stages help project managers effectively al-
locate resources, make plans, and react to the risks of being over
schedule or budget [7][6][22]. However, during the early stages,
very little information about the project or the system is known to
measure software size, which is the primary input for many effort
estimation models [5]. To measure software size early, Karner devel-
oped Use Case Points (UCPs) as a functional size metric for object-
oriented projects that utilize the use case technique of gathering
and understanding requirements [13]. Due to its early applicability
during the software development lifecycle, UCPs has gained wide
acceptance [12].

Table 1 presents the steps and rules to calculate UCPs. In sum-
mary, use cases are classified into three levels of complexity based
on the number of transactions included in the use cases. Each com-
plexity level is assigned a weight to represent its effect on software
size. For example, if a use case contains 1-3 transactions, it is a
simple use case with a weight of 5; whereas a use case with 5
transactions is an average use case with a weight of 10. Actors are
similarly classified and weighted. Then, the sums of the weighted
use cases and weighted actors are calculated for the Unadjusted
Use Case Weight (UUCW) and Unadjusted Actor Weight (UAW),
respectively. The sum of UUCW and UAW is called Unajdusted
Use Case Points (UUCP). The environmental (EF) and technical
complexity (TCF) factors are evaluated to represent the influences
from those aspects on project effort. Lastly, UCPs (Use Case Points)
is calculated by multiplying UUCP, EF, and TCF. Since UUCW con-
tributes most to the software size measurements (more than 90%
based on our experimental datasets), we focus on calibrating the
use cases complexity weights using the available datasets to avoid
the problem of overfitting. However, we maintain that the proposed
approach is also applicable to calibrating actor complexity weights,
used to calculate UAW.
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Table 1: The UCPs calculation process

Step Rules Results

1 Classify the use cases (C) into 3 levels of com- | CMPLX,
plexity (CMPLX), based on the number of
transactions (N'T) of each use case:
Simple, NT, <=3
CMPLX. = {Average, NT. <=7
Complex, NT¢c>7

2 Sum the weighted use cases as Unadjusted | UUCW

Use Case Weight (UUCW):
uucw = 3w,
ceC

Where:

5, CMPLX. = Simple
W, = {10, CMPLX, = Average

15, CMPLX, = Complex
3 Classify the actors (A) into 3 levels of com- UAW
plexity and assign a weight for each actor
based on its level of complexity. Sum the
weighted actors as Unadjusted Actor Weight
(UAW):
UAW = )" W,

acA

Where:

1, CMPLXg4 = Simple
W, = {2, CMPLX4 = Average

3, CMPLXg = Complex

4 Evaluate the 13 technical factors and calcu- TCF
late TCF based on the sum of their impact
(TFactor):
TCF =0.6+(0.01« TFactor)

5 Evaluate the 8 environmental factors and cal- EF
culate EF based on the sum of their impact

(EFactor):
EF =1.4+(-0.03% EFactor)

6 Calculate Use Case Points (UCPs) : ucpe
UCPs =(UUCW + UAW) *« TCF = EF

=UUCP «TCF % EF

While practitioners and research papers have reported the effec-
tiveness of UCPs [1-3, 9, 24, 27], the UCPs method has also been
criticized for the complexity weights not being validated with data
[12][18] - Karner defined the complexity weights based on his do-
main knowledge gained from Objectory Systems [13]. Also, as the
software development environment has changed greatly since the
development of the UCPs method, its weighting scheme may not
be applicable for modern use case driven projects. To overcome this
well-known issue, we use Bayesian analysis to update the experts’
estimates of use case complexity weights using empirically cali-
brated results with the goal of improving effort estimation accuracy
using UCPs.

Different from the maximum likelihood method of estimating
parameters of a statistical model, the Bayesian approach models the
posterior probability of an unknown parameter (P(0|X)) by updat-
ing the prior probability (P()) as more evidence becomes available.
The evidence is the new data that may affect the probability of the
unknown parameter. The posterior probability can be computed
according to Bayes’ theorem by Eq. (1).
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_ P(X10)P(0)
P(O1X) = PN 1)
Using the derived posterior probability distribution, we are able
to calculate the posterior mean as the estimate of a parameter or a

variable using Eq. (2).

6 =E(6) =/9P(9\X)d9 (2

For the normally distributed P(X|0) and P(0), the posterior mean
can be analytically computed as the weighted average of the prior
mean and the sample mean using Eq. (3)[20]. The weights in the
weighted average are the precision of the two sources of information
(defined as the inverse of the variance).

é:(a+ﬁ)_1*(a*9*+ﬁ*9**) (3)

In Eq. (3), 0 is the posterior mean, or in other words, the Bayesian
estimate of the parameter 6. % and 0** are means of the prior and
sample information, and « and f are the inverses of their variances,
called precisions. The variance of the posterior distribution can be
correspondingly computed as Eq. (4).

Var(f) = (a+ )" @

The prior information usually consists of expert judgment which
has not been validated by data, while the sample information can be
derived from statistical analysis of data, for example, by maximizing
the likelihood function (P(X|6)) that is defined on data. In this
paper, the use case complexity weights proposed in previously
published papers are used as the prior information, and the weights
determined by running multiple linear regression (MLR) analysis
on the datasets of 105 historical projects are used as the sample
information.

To validate the effectiveness of our approach, we used 10-fold
cross-validation to evaluate the out-of-sample effort estimation
accuracy of the approach based on the 105 historical projects. In
addition to demonstrating the improvement in effort estimation
accuracy, we also make a few interesting observations about the
interconnection between sample size, homogeneity of datasets,
and selection of software size estimators based on our empirical
study results, which can be used as effective guidelines to select
appropriate size estimation methods in the typical software size
calibration situations.

The rest of the paper is structured into 6 sections. Section 2 in-
troduces previous work completed in modifying the UCPs method
for better effort estimation. Section 3 details our approach in cal-
ibrating the use case complexity weights with Bayesian analysis.
The datasets used for and the results from model calibration and
validation are presented in Section 4. Lastly, we discuss the threats
to validity in Section 5 and make the conclusions in Section 6.

2 RELATED WORK

When Karner first proposed the UCPs method in 1993, he explained
how the complexity weights were set by stating: "the weights in
this article are a first approximation by people at Objective Sys-
tems" [13]. At that point, Karner also pointed out that more data
was needed to adjust the model, weights, and parameters. Since
then, the method has been highly used, yet some limitations have
also been reported. For example, Nassif et al. [18] argues that the
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lack of granularity when classifying the complexity of uses cases
negatively affects estimation accuracy. To tackle criticism that the
originally defined complexity levels and the weights assigned to the
levels might not reflect the actual situations, new approaches were
proposed to improve this aspect of the UCPs estimation method.
We distinguished three main groups of approaches: the first group
focused adding extra complexity levels, the second group focused
discretizing the existing complexity levels, and the third group
focused on empirically calibrating the use case and the actor com-
plexity weights.

Adding extra complexity levels. Mudasir Manzoor Kirmani and
Abdul Wahid [14] proposed the Re-UCP method as a revision of the
UCP [13] and e-UCP (extended Use Case Points method [21]). Re-
UCP adds one extra rating level - "critical"- for both the use case and
actor weighting schemes [14]. They conducted an experiment with
51 students, who were trained and divided in groups to estimate the
effort of 14 projects. They observed that the effort estimated using
Re-UCP method was closer to the actual effort in comparison with
estimated effort using UCP & e-UCP methods. Minkiewicz [15] also
proposed to add one extra rating level - "very high" - to the use
case weighting scheme, and found a correlation between Use Case
Points with Actors and Unadjusted Function Points. Nassif [16]
added three more use case complexity levels to the UCPs’ original
weighting scheme, extending their complexity weights to 20, 25,
and 30 points. Including other improvements to the UCPs method,
he evaluated the proposed model with 65 industrial data points and
achieved promising results [16].

Discretizing existing complexity levels. Using fuzzy logic, Wang et
al. [28] and Nassif [16] suggested discretizing the levels of complex-
ity into more granular options and assigning corresponding weights
to differentiate their effects on software size. Wang et al. [28] pro-
posed a method called EUCP to extend use case complexity from
three to five categories by applying fuzzy set theory to smooth over
the abrupt classification of use cases. The authors demonstrated
the effectiveness of EUCP through a case study [28]. Nassif et al.
[18] proposed an enhancement to the model using fuzzy logic and
neural networks. The authors used fuzzy logic to discretize the use
case complexity levels into ten categories according to the number
of transactions in a use case, maintaining the maximum number of
transactions as 10 and the complexity weight applied to the largest
use case as 15, as originally defined by Karner. The evaluation of
this approach was conducted on 20 different projects and the results
showed that the UCPs-based software estimation can be improved
by up to 22% in some projects [18].

Empirically calibrating complexity weights. In another paper, Nas-
sif proposed to empirically calibrate the weights assigned to the
different use case complexity levels using neural networks [17].
However, specific experiment results or details of the approach were
not found. Other than this research, we were unable to find other
research papers that calibrated the use case complexity weights.

Although these studies showed good results by extending the
UCPs method, none of them presented specific results or methods
to empirically calibrate the complexity weights. Our study presents
a valuable contribution to research in the UCPs method by demon-
strating how the use case complexity weights can be empirically
calibrated. We demonstrate that it is possible to improve the ac-
curacy of UCPs-based software effort estimation if we update the
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Figure 1: The Bayesian approach of UCPs weight calibration.
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weights proposed by domain experts and the weights calibrated by
data using Bayesian analysis.

Bayesian analysis, on the other hand, has been used in building
the COCOMOR®II effort estimation model to combine domain expe-
rience and empirical study results [7][8]. COCOMO®II combines
the effects of the cost drivers estimated by experts on project effort
and the effects calibrated by data to solve the unintuitive results
from the calibration - the calibration returned negative values for
some of the parameters, which are regarded as counter-intuitive to
the experts. An empirical study verified that the parameter values
resulting from Bayesian analysis led to superior results compared
to the model only based on expert judgment or data analysis [8].

In this paper, we followed the framework of Bayesian analysis
and proposed the methods of synthesizing experts’ proposals of use
case complexity weights, calibrating the weights from empirical
data, and combining the two pieces of information to achieve better
effort estimation accuracy using UCPs.

3 THE BAYESIAN APPROACH TO
CALIBRATE USE CASE WEIGHTS

3.1 The calibration process

As depicted in Figure 1, our approach of combining the prior and the
sample information of use case complexity weights using Bayesian
analysis generally goes through the following 3 steps:

(1) Calculate the means and variances of the complexity weights
proposed by the experts as the prior information, which are
denoted by the vectors wa—pri = {w1, wa, w3} and 52_[)” =

{512, 522, 5§ }. The details of our approach to deriving the prior

information of the use case complexity weights are presented

in Section 3.2.

Calibrate the weights for simple use cases (UCsimpie), aver-

age use cases (UCquerage), and complex use cases (UCcomplex)

by running multiple linear regression (MLR) on an empirical
dataset. The calibrated weights and their variances, denoted

by vectors wreg = {WT, w;, w;‘} and 5399 = {5;*2, 5;2, 5;2},

are used as the sample information input to the Bayesian

analysis process. This is further explained in Section 3.3.

(3) Calculate the Bayesian estimates of the use case weights
and their variances by performing a weighted average of the
prior means and the empirically calibrated weights for the

—
N
~
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Table 2: The weighting schemes from previous studies

Weght. Schm. Study Year Metric
1 Karner [13] 1993 ucp
5 Minkiewicz [15] 2004 UCP Sizing
2 Wang et al.[28] 2009 EUCP
4 Nassif [16] 2012 Soft-UCP
3 Kirmani and Wahid [14] 2015 Re-UCP
6 Nassif et al.[18] 2016 Enhanced UCP

use case complexity levels. The Bayesian estimates and vari-

— (a5 Ao A0 2 —
ances are denoted by wpqyes = {W1, Wa, W3} and 6bayes =

c2 22 o2 . . .
{61,082 ,93 }. The weights used in the averaging process
are based on the variances of the two sources of information.
The details of this step are further explained in Section 3.4.

3.2 The prior information

In order to understand the differences in the use case complexity
weights applied in practice, we did a systematic review of the papers
related to use case calibration published between 2007 and 2017 in
the 4 major research paper databases as suggested in [10]: Scopus,
IEEE Xplore, ACM DL, and Science Direct. The aim of this literature
review was to search for the previous studies that proposed differ-
ent use case complexity weights. We also performed backwards
snowballing, by examining the studies from the references of the
selected papers.

Six papers were identified, which proposed new weighting schemes
by distinct researchers and practitioners for the use case complexity
levels (including the weighting scheme used in the original UCPs’
definition). The sources of the weighting schemes are presented in
Table 2. The weighting schemes are plotted in Figure 2. The weights
proposed by these authors are based on their domain knowledge or
analyses on datasets for the purpose of improving the estimation
accuracy of the original Use Case Points (UCPs). For instance, Kir-
mani and Wahid introduced an extra level of complexity to cover
the use cases with number of transactions being larger than 15 [14].
Wang et al. used fuzzy logic to calculate weights and determine
how complexity levels should be set, leading to different weights
being applied to different ranges of transactions from the original
UCPs method [28]. We calculated the mean and the variance of the
weights proposed by these experts for each of the three use case
complexity levels, and use them as the prior information in the
Bayesian analysis.

In Figure 2, the two vertical dashed lines separate the number
of transactions into three ranges representing different use case
complexity levels defined in the original UCPs method, and the
weights for the different numbers of transactions in each range
represent the experts’ opinions on the effects a use case complexity
level has on software size.

Based on the weighting schemes, we propose to calculate the
prior information as follows:

(1) For each use case complexity level (I), an expert (i) may have
different ratings (r;(i)) about the effects that use cases, with
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Figure 2: The UCPs complexity weight distribution with re-
spect to Number of Transactions (NT).

different numbers of transactions (¢ € I), have on software
size.

(2) The mean value (r;(i)) of the ratings provided by an expert
(i) for a use case complexity level (I) represents the expert’s
estimate of the weight (w;(i)) that should be assigned to I.

(3) w;(i) is calculated as the weighted average of r;(i) where
t € I. The weights are decided by the probability (Pr(t)) of a
use case having t transactions. w;(i) is formally defined by

Eq (5).

wi(i) = ry(i) = Y re(i) + Pr(t) ©)

tel

—
N
=

The probability (Pr(t)) is approximated by the relative fre-
quency of use cases having t transactions with respect to the
total number of use cases of the complexity level (I) where
t € I. The frequency distribution (f) of use cases with re-
spect to the number of transactions (NT) is plotted in Figure
2, which is based on a sample of 34 historical use case driven
projects. The details of this dataset (D1) are introduced in
Section 4.2.

f®
kel f(k)
(5) After we calculate experts’ estimates of the weights (w;(i))
applied to each use case complexity level, the mean value
(wy) and variance (512) are calculated over w;(i), where ] € L
and L is the complexity levels defined in the original UCPs
method. wy and 512 are calculated by Eq. (7) and Eq. (8), where
N is the total number of experts who provide estimates.

Pr(t) =

(6)

LN
wr =gt Z wy (i) ™)

2 _ 1 < 2
87 = 5 * 2w = wi) ®

Following the process, we calculated the weights w,—pr; and
their variances 5‘21_ pri for the three use case complexity levels based
on the 6 weighting schemes plotted in Figure 2. The results are
displayed in Table 3, which are used as the prior information for the
Bayesian analysis. To test the normality of the prior distributions,
we evaluated their symmetry and tailedness by calculating the
skewness (1) and kurtosis (x) for each complexity level (presented
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Table 3: The use case complexity weights proposed by previ-
ous studies

Weight. Schm.  UCsimpre  UCaverage  UCcomplex

1 5 10 15
2 5.93 10.24 18.95
3 5 7.66 15
4 5 7.66 16.84
5 5 10 16.84
6 5.81 8.49 14.19

Wa—pri 5.29 9.00 16.14

8 pri 0.20 1.48 3.06
A 0.52 -0.15 0.73
K 2.08 1.20 1.56

in Table 3). We observed that the prior distributions generally fit
the bell curve. For this research, we assume the prior is normally
distributed.

Our calculation of prior information relies on the frequency dis-
tribution (f) of use cases over different numbers of transactions
(NT), which makes wj(i) more towards to the expected weight as-
signed to a complexity level when using a specific method i. To
alleviate the assumption of f, one can assume f is uniformly dis-
tributed, such that the expert’s estimate of the effect that a complex-
ity level has on the software size can be calculated as the average
of the ratings (r;(i)) for that use case complexity level. In this case,
no empirical frequency distribution of the use cases with respect
to NT is needed. Therefore, the calculation can be simplified as Eq.
(9), where |I| represents the length of the NT range a complexity
level I covers.

wi®) = g 3 et ©

tel

3.3 The sample information

Three steps were proposed to calculate the sample information from

an empirical dataset. The sample information includes the weights

(Wreg = {w],w;,w};}) and their variances (5589 = {5;2, 5;‘2, 5;‘2})

for the three use case complexity levels. The steps are as follows:

(1) Follow the normal UCPs counting process to calculate the

UCPs for each project. Specifically, we evaluate the numbers
of simple use cases (UCs;imple), average use cases (UCqverage),
and complex use cases (UComplex) to calculate the Unad-
justed Use Case Weight (UUCW); the numbers of simple
actors (ACT;mp1e), average actors (ACTqoerage), and com-
plex actors (ACT;omplex) to calculate the Unadjusted Actor
Weight (UAW); rated the environmental factors (EF) and
technical complexity factors (TCF). Using all these numbers,
we calculate the UCPs for each project by Eq. (10). An exam-
ple of the counting results is presented in [23], which is also
one of the datasets (D1) used to evaluate the performance of
the Bayesian approach in Section 4.3.

UCP = (UUCW + UAW) = TCF % EF (10)
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In this step, we also record the number of transactions (NT)
of each use case to generate the frequency distribution (Fig-
ure 2) of the use cases with respect to NT for calculating the
prior information (introduced in Section 3.2).

(2) Apply linear regression of actual effort on UCPs to calibrate
the productivity factor « using Eq. (11). The empirical pro-
ductivity factor a represents the number of person-hours
required to develop one unit of UCPs.

Effort,eq; = a*UCP (11)

Then, calculate the normalized project effort (Ef fortnorm)

for each data point using Eq. (12). Ef fortporm is the ex-

pected effort under the nominal conditions of EF and TCF.
Effortyear

Effortnorm = “TCF+EF (12)

Ef fortyorm and a are then used to calculate UUCWep by
Eq. (13), which represents the empirically measured system
size in terms of Unadjusted Use Case Weight (UUCW).

UUCWemp =

E t
M —UAW (13)
a

(3) Perform multiple linear regression of UUCWemp on UCsimple.
UCaverage and UC ompjex according to Eq. (14) to calibrate
parameters wyeg = {wj, wj, w; }, which represent the con-
tributions of the use case complexity levels to software size.

UUCWemp = w) * UCsimple + Wy * UCaverage + W3 * UCcomplex  (14)

The variances of the parameters (§Eeg = {5;2, 5;2, 5;2}) can
be estimated using Eq. (15), where X is the design matrix

and A? represents the variance of the error term.

§2 =2 (xTx)™ (15)
A? can be estimated by mean squared error (s?) with Eq. (16)

[11], where e is the residuals for the sample data, n is the
number of observations, and p is the number of parameters.

, ele
s¢ = (16)

n-p
In our experiments, we applied the above procedure to three
datasets (D1, D2, and D3) to derive the sample information (wyeg =

{w], w},wj} and 5389 = {5;‘2, 5;2, 5;‘2}) from each dataset. The
sample information was then used to update the prior information
to generate Bayesian estimates of the use case complexity weights.
The results from the normality tests of the sample information are
reported in terms of the skewness (1) and kurtosis (k) of distribu-

tions of the residuals from the multiple linear regression analyses.

3.4 The Bayesian approach of combining prior
and sample information

We updated the prior information using the sample information
by taking the weighted averages of wa—pr; and wyeg. The weights
used in the averaging process are based on the precisions of the
estimates, which are calculated as the inverses of the variances of
the estimates: 52_ pri and 82, 4- The Bayesian averaged estimates
of the weights wpgyes = {W1, W2, W3} for the different use case

. . . 22 22 22
complexity levels and their variances 5§ayes ={61 ,02 ,03 } are
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calculated using Eq. (17) and Eq. (18), where Hy—pr; = 52; and
a-pri
1
Hreg = %.
Whayes = (Ha-pri + Hreg)71 *(Ha-pri * Wa—pri + Hreg * Wreg) 17)
6zayes = (Ha-pri + Hrey>71 (18)

This process was applied to D1, D2, and D3 to derive three sets of
Whayes and 5;@23 as the Bayesian estimates of use case complexity
weights.

4 EMPIRICAL STUDY

4.1 Research Questions

To systematically evaluate our approach of calibrating use case
complexity weights using Bayesian analysis, we set three research
questions:

(1) RQ1: What influences does the Bayesian approach have on
the use case complexity weights, in comparison with the
weights suggested by experts and the weights calibrated by
data?

(2) RQ2: Can the Bayesian approach improve effort estimation
accuracy in comparison with other typical software size
estimators? If so, how much?

(3) RQ3: How do the Bayesian approach and other size estima-
tors perform in the model calibration situations having differ-
ent sample sizes and homogeneous/heterogeneous datasets.

4.2 Datasets

The first dataset is composed of 34 data points collected from mas-
ter’s computer science student projects at USC’s Center Systems
and Software Engineering (CSSE) during 2014-2016, which lasted
between 4-8 months. A wide range of software products were de-
veloped: web applications, mobile applications, mobile games, in-
formation systems, and scientific tools, which yielded 1-10 KSLOC
in source code. Teams consisted of 5-8 people who took on spe-
cific roles, such as, project manager, designer, architect, quality
focal point, developer, and tester. All the projects followed for-
mal software development methods, including use case driven,
design-driven, risk-driven, plan-based, and agile methodologies.
The requirements were given by real-world clients from start-ups,
non-profits, education institutes, government agencies, etc., and the
clients were closely involved in the engineering activities through-
out the entire lifecycle. The products were tested and evaluated
before their acceptance. Project effort was recorded through Jira
tickets and weekly effort reports. The counting results for the fac-
tors used in calibrating use case complexity weights are presented
n [23]. We call this dataset D1.

The second dataset (D2) is a Use Case Points benchmark dataset
published by Radek Silhavy in the Zenodo Repository [26]. This
dataset consists of 71 data points collected from three software
houses and has been used by the authors in the research of se-
lecting regression models for size estimation based on UCPs [25].
The projects are from different business sectors of software devel-
opment, including manufacturing, banking, and communication.
The software products were developed in 3rd generation program-
ming languages, including java, C#, C++, etc., and were categorized
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into business applications, real-time applications, mathematically-
intensive applications, etc. Different methodologies, for example,
waterfall, personal software process, rapid application development,
etc. were used in the development of the software products.

Since the projects from D1 were developed by university stu-
dents, one could argue that the results are not generalizable. Hence,
we also run the analysis on a public dataset (D2) to validate the
analysis results. Since D1 and D2 were developed in considerably
different development environments according to their descrip-
tions, we also experimented our approach on these two datasets
combined in order to evaluate the performance of our approach
in a mixed environment - to test the robustness of the Bayesian
approach of calibrating use case weights. We call this combined
dataset D3.

4.3 Evaluation Methods and Results

The evaluation of the Bayesian approach of calibrating use case
complexity weights was separated into two parts: calibrating the
use case complexity weights and assessing effort estimation ac-
curacy. Specifically, we calibrated the weights based on the three
datasets to understand how much influence each level of use case
complexity has on software size to answer RQ1. We applied 10-fold
cross-validation for the out-of-sample effort estimation accuracy of
the Bayesian size estimator, and compared the accuracy statistics
among other size estimators to determine whether the Baysesian
approach led to more accurate effort estimates (RQ2). We also dis-
cuss the interconnection between sample size, homogeneity of a
dataset, and applicability of the software size estimators based on
the accuracy evaluation results (RQ3).

4.3.1 Calibration of Use Case Weights (RQ1). We applied the
calibration process introduced in Section 3.3 on the three datasets
to calibrate the weights wy¢4 and their variances §2, g for the use
case complexity levels, which are used as the sample information.
After that, we updated the prior information wgq—p,; and 52_ ori
(calculated in Section 3.2 and presented in Table 3) with the sample
estimates. The sample information and the results from Bayesian
analysis for the three datasets are presented in Table 4. A graphical
example (based on D1) of how the Bayesian approach combines the
two pieces of information is presented in Figure 3 .

Analysis of the calibrated weights (RQ1). Based on the calibration
results presented in Table 4, we summarize the properties of the
Bayesian estimates as follows to answer RQ1:

(1) The Bayesian estimates of the weights for average use cases
tend to be smaller than the weight set by the original UCPs
method: by 15.9% for D1, 9.2% for D2, and 3.1% for D3. On
the other hand, the Bayesian estimates of the weights for
complex use cases are generally larger than the weights
set by the original UCPs method: by 15.4% for D1, 13.1%
for D2, and 15.8% for D3. This observation implies that the
influences of the different use case complexity levels toward
project effort tend to be non-linearly increasing (for example,
1:1.6:3.3, based on D1), instead of the linear relationship -
simple being 5, average being 10, and complex being 15 (1:2:3)
as proposed by the original UCPs method. This phenomenon
is similarly observed by Barry Boehm and formalized and
termed as "diseconomies of scale" [7].
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5 0 5 10 15 -10 0 10 20 0 10 20 30
Simple Use Case Weight Average Use Case Weight Complex Use Case Weight

Methods DA—Prion |:| Bayesian I:‘ Regression

Figure 3: An example of updating UC complexity weights
using Bayesian analysis.

Table 4: The sample estimates and the Bayesian estimates of
the use case complexity weights

D1 D2 D3
Complexity  Estr. w 52 w 52 w 52
. reg. 484 333 -0.71 5213 -455 10.11
Simple
bayes. 5.26 0.19 527 0.20 5.10 0.20
reg. 6.41 489 9.46 836 1249 6.08
Average
bayes. 841 1.13 9.08 1.26 9.69 1.19
reg. 19.15 471 1956 942 2022 7.06
Complex
bayes. 17.32 185 16.97 231 17.37 213
A K A K A K
198 7.69 -148 5.41 0.70 3.78

(2) The Bayesian averaging approach corrects the counter-intuitive
results from the sample estimates. For instance, the empiri-
cally calibrated weights for simple use cases are negative for
both D2 and D3. Theoretically, this may be due to the small
variances of the numbers of simple use cases in the datasets
[71(8], and this is demonstrated by the large variance in the
sample estimates of simple use case weights (as shown in Ta-
ble 4). For instance, the ratio between 5369 : 52_17”. is 261:1
for D2 and 51:1 for D3. The Bayesian approach corrects these
counter-intuitive estimates for D2 and D3. Another potential
solution to this problem is to adjust the classification rules of
complexity levels to allow more use cases to be determined
as simple. However, this is beyond the scope of this research,
but an interesting direction for our future study.

(3) The variances of the Bayesian estimates of weights are smaller
than both the experts’ estimates and the sample estimates,
which implies that the Bayesian estimates are more stable.

4.3.2  Evaluation of Effort Estimation Accuracy (RQ2 and RQ3).
Accuracy Measures. To evaluate the effectiveness of the Bayesian
method in determining use case complexity weights, we evaluate
the effort estimation accuracy in terms of MMRE and PRED, which
are the commonly used accuracy measures in software engineer-
ing [7] [19]. Both MMRE and PRED rely on the quantity called
magnitude of relative error (MRE), which is defined by Eq. (19).

lyi — 4l
Yi
MMRE measures the sample mean of MRE, while PRED(x) mea-

sures the percentage of the estimates within a threshold x (in terms

MRE; = (19)
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of MRE). MMRE and PRED(x) can be calculated using Eq. (20) and Eq.
(21) respectively. Low values of MMRE and high values of PRED(x)
are desirable. These statistics give cost estimation practitioners the
ability to state how often estimates can be expected to be within
an acceptable margin of error.

N
1
MMRE = Z MRE; (20)
i=1
1 & (1, #MRE; <x
PRED(x) = — > = 21
RED(x) N;{O, otherwise @y

Since MMRE and PRED(.25) are the most frequently used ac-
curacy criteria [19], we emphasize these two accuracy metrics in
the evaluation of the performance of the software size estimators.
Since, there is no standard value of x for PRED(x) to be used for
accuracy evaluation [19], and we also observed in our experiments
that a model may perform better than another model in terms
of PRED(.25) while performing worse than the same model for
PRED(.30), we propose to evaluate PRED(.01) to PRED(0.50) to com-
prehensively monitor the comparative performance of the sizing
estimators. Therefore, in addition to MMRE and PRED(.25), we also
use the average of the differences in the values from PRED(0.01) to
PRED(0.50) (Eq. 22) to certify which model performs better.

0.50
1
AVG_PRED_IMP = — > (PREDy(x) - PRED;(x)) (22)
x=0.01

Out-of-sample Accuracy Assessment. Four size estimators were
compared in terms of the out-of-sample effort prediction accuracy
using 10-fold cross-validation. There are 4 sources of size estima-
tion: the Bayesian approach of estimating the weights, the method
of calculating prior information by synthesizing experts’ estimates
(introduced in Section 3.2), the original UCPs method, and the
multiple linear regression method that derives the sample infor-
mation, which are called Bayesian (B.), A-Priori (A.), Original (O.),
Regression (R.) estimators respectively in the following sections for
simplicity. They can be categorized into two types: expert-based
estimators, which include the Bayesian, A-Priori, and Original esti-
mators; and data-driven estimators, which includes the Bayesian
and Regression estimators - the Bayesian approach belongs to both
the categories for it combines the prior and sample information.
The produced weights are then plugged into Eq. 23 to estimate
project effort.

Effortestimate = a* (w1 # UCsimpie + W2 * UCaverage+
w3 £ UCcomplex + UAW) + TCF x EF @
Cross-validation is a technique to test a prediction model on an
independent dataset to better assess the performance of the model
on new observations [11]. Specifically, each of three datasets was
separated into 10 folds, and 10 runs of training and testing were
applied to evaluate the effort estimation accuracy with the chosen
metrics: MMRE, PRED(.15), PRED(.25), and PRED(.50). The averages
of the values of MMRE, PRED(.15), PRED(.25), and PRED(.50) across
the 10 runs were used as the final estimation accuracy indicators.
The standard deviations of accuracy measurements were calculated
and used to evaluate the statistical significance of the estimation
accuracy improvements.
The testing results - the accuracy measurements and their stan-
dard deviations - are presented in Table 5 and Figure 4. The standard
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MMRE over D1, D2, and D3 PRED(.15) over D1, D2, and D3 PRED(.25) over D1, D2, and D3 PRED(.50) over D1, D2, and D3
— B
) 0 © =
o T & ° . 5.
wow - 5 |- N n
o - - 3 = a4 N o
S o 3 a-= ) { o a5t - 5
s - _ = T N =] P e 2
o = o o |- a P" a
= = @
e |t et <
T T T T T T T (=] T T T T T T T T T T T T T T e T T T T T T T
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
Number of Data Points Number of Data Points Number of Data Points Number of Data Points
Estimator —— Bayesian - A-Priori + Original -+-Regression

Figure 4: Accuracy evaluation of the size estimators over D1, D2, and D3.

Table 5: The accuracy results of the Bayesian (B.), A-Priori Table 6: Improvements measured by AVG_PRED_IMP
(A.), Original (0.), and Regression (R.) estimators by 10-fold
cross-validation Dataset AvgPImp Bayes. A-Pri. Orig. Reg.
Bayesian 0.000  0.099 0.103  0.131
D. Estr. | M.  Std. | P.(15) Std. | P.(25) Std. | P.(.50) Std. A-Priori _ 0.000 0004  0.032
B. | 0714 0.196| 0.442 0.106 | 0.492 0.101| 0.758 0.075 D1 Original ~ ~ 0,000 0.028
A. 0.882 0.167 | 0.308 0.100 | 0.358 0.095| 0.475 0.086 .
D1 Regression - - - 0.000
0. 0.883 0.164 | 0.308 0.100 | 0.333 0.095| 0.558 0.068 Bayesian 0.000 0.030 0.034 0.028
R. 0.892 0.177| 0.217 0.085| 0.333 0.113 | 0.475 0.086 A-Priori _ 0.000 0004  -0.002
B. | 0.209 0.021| 0418 0.071| 0.618 0.057 | 0.957 0.022 D2 Original ~ 0000 -0.006
A. 0.275 0.022 | 0.296 0.045| 0.488 0.078 | 0.888 0.047 R .
D2 egression - - - 0.000
0. 0.276  0.022 | 0.268 0.054 | 0.502 0.081 | 0.888 0.047 Bayesian 0.000 0077 0076 0026
R. | 0285 0.025| 0307 0.067 | 0.521 0.056| 0.873 0.045 APriori ~ 0000 0002  -0.052
B. 1.203 0.218 | 0.235 0.057 | 0.407 0.067 | 0.666 0.054 D3 Original _ _ 0.000  -0.050
D3 A. 1.819 0.731| 0.187 0.029 | 0.273 0.040 | 0.617 0.038 Regression _ _ _ 0.000
0. 1.795 0.714| 0.197 0.024 | 0.284 0.039 | 0.627 0.039
R. 1.209 0.293 | 0.265 0.040 | 0.369 0.049 | 0.646 0.057
D1 D2 D3 4.3.3  Comparison of the size estimators (RQ2). In comparing
the effort estimates among the four software size estimators, the
< Bayesian method consistently outperforms the others for all three
v 0o |08 datasets. For instance, as presented in Table 5, the Bayesian method
g fd outperforms the A-Priori, Original, and Regression methods by
§o4- / 13.4%, 15.9%, and 15.9% respectively for PRED(.25), and by 16.8%,
5 e 16.9%, and 17.8% respectively for MMRE, with respect to D1. For D2
g, B and D3, the Bayesian method’s MMRE outperforms the Original
¢ J method by 6.7% and 59.2%, respectively. Additionally, the Bayesian
= 1‘7 method’s PRED(.25) for D2 and D3 outperforms the Original method
0.04 & . . .
by 11.6% and 12.3%, respectively. The improvements in terms of
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 .
Relative Error (x%) Relative Error (x%) Relative Error (x%) MMRE and PRED(.25) can also be found when comparing the
Estimator ~=- Bayesian == A Priori == Original ~+~ Regression Bayesian method with the A-Priori and Regression methods over
D2 and D3.

Figure 5: Evaluation of the four size estimators from Among the 36 comparisons between the Bayesian estimator and
PRED(0.01) - PRED(0.50) over the three datasets. other estimators in terms of the four accuracy measures over the
three datasets, we found that the improvements over A-Priori in
terms of PRED(.50) for D1, over Regression in terms of PRED(.50)

deviations are plotted as the vertical lines through the accuracy for D1, over Regression in terms of MMRE for D2, over Original in
measurements in Figure 4. A more comprehensive evaluation of terms of MMRE for D2, and over A-Priori in terms of MMRE for
prediction accuracy is presented in Figure 5, which plots PRED(.01) D2, are statistically significant, based on the two-sample Student’s
- PRED(0.50) for the four software size estimators over the three t-tests corrected by Benjamini-Hochberg procedure with a false dis-
datasets. Also the results from assessing the averaged PRED im- covery rate of 30% [4]. However, due to limited statistical power the

provements (AVG_PRED_IMP) are presented in Table 6. small sample size (the testing results from 10-fold cross-validation)
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provides, further testing of the significance of the improvements is
needed.

The plot from PRED(.01) to PRED(.50) in Figure 5 also certi-
fies the improvement over other size estimators. Based on these
observations, we conclude that the weights decided by Bayesian
analysis perform better than the weights decided using only ex-
pert judgment or purely data driven methods across the software
engineering situations that the datasets represent.

4.3.4 Interconnection between sample size, homogeneity of a
dataset, and performance of size estimators (RQ3). In addition to
demonstrating the effectiveness of Bayesian analysis in measuring
software size, we also made a few observations about how sample
size and homogeneity of a dataset affect effort estimation accuracy
based on the accuracy evaluation results. We believe these obser-
vations provide effective guidelines for selecting appropriate size
estimation methods in typical software size modeling situations.

Stratification improves effort estimation accuracy. In the mixed
environment (D3), all the four size estimators decrease in effort esti-
mation accuracy significantly. For instance, as presented in Table 5,
by comparing D1 and D2 with D3 respectively, the Bayesian method
decreases by 48.9% and 99.4% in terms of MMRE, and 8.5% and 21.1%
in terms of PRED(.25). This deterioration is especially noticeable
from Figure 4 when we compare the accuracy measurements be-
tween D2 and D3, since D2 and D3 have similar numbers of data
points (71 and 105, respectively), but there are significant decreases
in the estimation accuracy measurements. Similar deteriorations
can be found in the performance of other size estimators in Table 5.
This phenomenon suggests that, in order to achieve better effort
estimation accuracy, stratifying a dataset based on their inherent
properties, for example, by teams, organizations, periods of time
of development, or development environments is preferred, when
developing and calibrating size metrics for effort estimation.

For small and homogeneous datasets, expert-based size metrics
outperform the size metric decided by linear regression. As shown
in Table 5 and Figure 4, the A-Priori and Original methods slightly
outperform the Regression method by 1.0% and 0.9% respectively
for MMRE for D1. This trend can also be found for other accuracy
metrics: PRED(.15), PRED(.25), and PRED(.50) from Table 5 and Fig-
ure 4. The accuracy improvements measured by AVG_PRED_IMP
shown in Table 6 also confirm this point in considering the A-Priori
and Original methods outperform the Regression method by 3.2%
and 2.8% respectively for D1. This phenomenon suggests that the
Regression method tends to overfit small training datasets such
that it provides worse estimation accuracy on new data points,
compared to the expert-based methods.

However, as more data points are provided in D2 for model
calibration and testing, the Regression method starts to perform
better. For instance, as shown in Figure 4 and Table 5, the Regres-
sion size estimator performs slightly better than both the A-Priori
and the Original size estimators for PRED(.25) (by 3.3% and 1.9%,
respectively), and provides the same level of accuracy as other size
estimators in terms of MMRE, PRED(.15), and PRED(.50). We can
also observe that the advantages of the expert-based size estimators
over the Regression estimator narrow down based on Figure 5.

Therefore, we suggest to use expert-based methods for small
datasets. D1, as an example of a small dataset, has 34:3 as the sample
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size to parameters ratio. Datasets that have a ratio of less than 11:1
can be regarded as small datasets.

For heterogeneous datasets, data driven methods are preferred.
Extending our finding in the last section about the increased perfor-
mance of the Regression method for the larger dataset D2, we also
found Regression method is more applicable to the heterogeneous
environment (D3) in comparison with the A-Priori and Original
methods. For instance, as shown in Table 5, the Regression method
outperforms both the A-Priori and Original methods significantly
with respect to D3, for example, by 9.6% and 8.5% for PRED(.25),
and by 61.0% and 58.6% for MMRE. These significant improvements
stand out especially in considering the Original and A-Priori meth-
ods perform better than or on par with the Regression method with
respect to D1 and D2. The improvements made by the Regression
method can also be observed by looking at PRED(.15) and PRED(.50)
from Table 5 and AVG_PRED_IMP from Table 6. Figure 4 and Figure
5 summarize this trend of improvements.

The advantage of data-driven methods over expert-based meth-
ods for D3 can be due to the fact that the effects a use case com-
plexity level has on effort will vary in heterogeneous datasets. For
example, more strict environments may require more testing for
the implemented functions (for realizing use cases), while less strict
environments may require less testing effort. Data-driven methods
are sensitive to the conflicts due to its ability in finding a mean
value to cover the different situations, however, the expert-based
estimates of weights may be biased in the conflicted situations.

5 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our proposed
method and the experimental results, and also the possible ways to
mitigate the threats.

Threats to Internal Validity. As mentioned in the model calibration
process (Section 3.2 and Section 3.3), both the processes of gather-
ing the prior information and the sample information rely on the
properties of the datasets. Specifically, the prior information relies
on the use case distribution with respect to NT, while the sample
information is calculated by applying multiple linear regression on
the numbers of use cases of different complexity levels. Therefore,
a certain degree of variation may exist in the weight calibration re-
sults as well as the estimation accuracy measurements presented in
our empirical study if different datasets are used. Local calibration
is encouraged when a dataset is available for a specific software
development environment. Also, the analytical procedure relies
on the prior and sample information being normally distributed.
Any considerable deviation from the assumptions should consider
a fully Bayesian treatment.

Threats to External Validity. Some aspects of this research may
also limit generalizability of the results. As mentioned in Section
4.2, the projects of D1 are considered small to medium projects,
as the sizes range from 1-10 KSLOC and were done with 5-8 team
members. Due to the information not being provided, we do not
know the sizes of the projects in D2 in terms of personnel and
source lines of code (SLOC), though D2 covers a wide range of
product types and business sectors. Therefore, the results presented
in this paper may not be directly applicable to larger projects (>= 10
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KSLOC). More data points from large projects are desired to further
test the performance of the method explored in this paper.

6 CONCLUSIONS

In this paper, we used the Bayesian approach to combine prior
information (complexity weights previously suggested by experts)
and the sample information (complexity weights calibrated from
data) for better calibration of use case complexity weights. To derive
the prior information, we did a systematic review of previously
published papers to summarize different proposals of the effects
that use case complexity levels should have on software size and
proposed the method to synthesize the different proposals. We
introduced the method to derive the sample information from the
empirical datasets and also the Bayesian approach of updating the
prior information using the derived sample information. To validate
the effectiveness of the Bayesian approach in adjusting use case
complexity weights, we evaluated the effort estimation accuracy of
the Bayesian approach on datasets of 105 projects and compared it
with the A-Priori, Original UCPs, and Regression approaches (RQ1
and RQ2). The results have shown that, in addition to the benefits
of correcting counter-intuitive calibration results and increasing
the stability of the estimates, the Bayesian approach consistently
provides better effort estimation accuracy in comparison with other
size estimators. Based on the evaluation results, we further provided
suggestions to effectively select software size calibration methods
in typical software size calibration situations (RQ3).

Future directions include collecting more data points that are
representative for wider ranges of software development situations,
especially, for large systems and engineering teams, and updating
the calibrated results for more general use. With more data points
available, we’d like to further test the significance of the improve-
ments in effort estimation accuracy. Also, we would like to extend
the literature review to the years earlier than 2007 to complete the
search of prior information. To alleviate the assumptions about the
normality of prior and sample information made by the analytical
method, Markov Chain Monte Carlo (MCMC) can be considered as
an effective tool to simulate the posterior distribution by sampling
from prior distribution, so as to provide full access to the posterior
information. As suggested in the paper, the underlying structure of
classifying use cases also needs to be reconsidered or adjusted to
be better adapted to modern use case driven projects, which would
be another interesting extension of this research.
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