
Poster: UMLx: A UML Diagram Analytic Tool for Software
Management Decisions

Kan Qi
University of Southern California

United States
kqi@usc.edu

Barry W. Boehm
University of Southern California

United States
boehm@usc.edu

ABSTRACT
A UML diagram analytic tool called UMLx is proposed, which au-
tomatically extracts information from UML diagrams to facilitate
decision making in risk management, planning, resource allocation,
and system design, based on a set of proposed metrics.

CCS CONCEPTS
• Software and its engineering→UnifiedModeling Language
(UML); Software development process management; Object
oriented development;

KEYWORDS
Software sizing, effort estimation, UML analysis, unified modeling
language (UML), project management, architecture quality evalua-
tion, object-oriented modeling, use case driven development

ACM Reference Format:
Kan Qi and Barry W. Boehm. 2018. Poster: UMLx: A UML Diagram Analytic
Tool for Software Management Decisions. In ICSE ’18 Companion: 40th
International Conference on Software Engineering Companion, May 27-June
3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3183440.3194969

1 INTRODUCTION
UML diagrams have been the major artifacts of the model-based
approach of software engineering. It comprises 14 diagrams to
describe the behavioral and structural aspects of a system. Also
a subset of the diagrams have been adopted in the attempts to
bring light-weight modeling into Agile software development[1].
In addition to their effectiveness in describing the behavioral and
structural aspects of the system being developed, system specifica-
tions defined using UML diagrams are also effective indicators of
software size, an accurate estimate of which can further be used to
estimate effort, cost, and schedule[2] and guide decision making in
various areas of software project management.

In this paper, we introduce a UML diagram analytic tool called
UMLx to derive information from the UML diagrams by the pro-
posed metrics and discuss their effects on various software man-
agement decisions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194969

2 THE AUTOMATED FRAMEWORK
2.1 Model Definition and Analytic Procedures

2.1.1 Parsing XML files. XMI files exported from UMLmodeling
tools are first parsed by the rules mapping the tagged elements of
XMI files to the UML elements defined in the UML metamodels.
A hierarchy of UML elements is constructed by establishing the
associations among the UML elements using the UUIDs of the
referenced tagged elements. This hierarchy includes multiple use
cases expounded by activity diagrams, sequence diagrams, and
object analysis diagrams and a domain model composed of a set of
classes to describe a system’s behavior and structure[3].

2.1.2 User-System InteractionModel (USIM) Construction. USIM
is defined based on the hierarchy of the parsed UML elements,
which includes the following key elements: activities (A), prece-
dence relations (PR), system boundary (SB), system scope (SCP),
stimuli (STL), and components (CMP). Specifically, activity, object
analysis, and sequence diagrams are converted into control flow
graphs (CFG) by graph transformation algorithms[4] to PR among
A. SB and STL are identified by the rules defined based on the asso-
ciations with actors. SCP defines the effective transactions. CMP
that realize A are identified from class diagrams.

2.1.3 Transaction Identification. The CFGs are traversed (based
on DFS) to identify the independent paths with the stimulus nodes
as the entry points and the exit points determined by the rules
based on the system boundary.

2.1.4 Transaction Classification. The identified transactions char-
acterized by the components and activities they are implemented
upon, the interface complexity of the components, the referenced
data elements, etc. These properties help classify the transactions
into different levels of complexity.

2.1.5 Model Profiling. The information at the different levels:
UML elements, transactions, use cases, and models, is profiled based
on the proposed metrics.

2.2 Evaluation Metrics
2.2.1 NT, SWT-I, SWT-II. The number of transactions (NT) has

been themajor factor that defines system functional sizemetrics[5][6].
Transactions can be classified into different complexity levels by
their properties, for example, operational complexity (defined as the
number of activities), called transaction length (TL), and interface
complexity (defined as the average number of the external methods
(|M |/|I |) exposed by an interface, where |M | is the total number of
methods exposed by |I | interfaces), called the degree of a transac-
tion (TD). Different weights are assigned to the complexity levels

https://doi.org/10.1145/3183440.3194969
https://doi.org/10.1145/3183440.3194969
https://doi.org/10.1145/3183440.3194969

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Kan Qi and Barry W. Boehm

Figure 1: USIM is constructed from XMI files to support au-
tomated transaction identification and classification.

to represent their relative influences on software size. The sum
of weighted transactions by this method is called SWT-I. Also, if
class diagrams are input, the data element types (DETs) referenced
by a transaction can be identified. The size metric that takes the
number of DETs into consideration is called SWT-II. The relevance
of the size metrics in predicting project effort is presented in the
top section of Figure 2, which is based on an empirical study of
19 student projects. Early effort estimations help decide a feasible
scope to avoid the risks of being over schedule or budget. Also,
we can prioritize use cases by the business value per unit of use
case complexity - BV/(NT/SWT-I/SWT-II) - to improve return on
investment (ROI).

2.2.2 CT. Seven operational characteristics are identified to
characterize a transaction: interface management (INT), external
input (EI), external inquiry (EQ), data management (DM), control
(CTRL), external call (EXTCLL), and external invocation (EXTIVK).
Each category essentially represents a type of developers needed
to implement the transactions of that category. Here we provide an
example of calculating the percentage distribution of development
effort of different types based on the categorized transactions (CT)
in the middle section of Figure 2.

2.2.3 ATC, ATD. The average number of components of a trans-
action (ATC) represents the expected number of system components
a developer needs to understand, create, modify, and test when
implementing a transaction of a use case. Similarly, the average
transaction degree (ATD) indicates the expected interface complex-
ity when implementing a transaction of a use case. Therefore, the
product of ATC and ATD (ATL-ATD) represents the architectural
difficulty a developer needs to deal with when implementing a
transaction of a use case.

3 CONCLUSIONS
In this paper, we introduce UML diagram analytic tool called UMLx
that is capable of analysing commonly used UML diagrams to de-
rive the information that facilitate decision making in various areas
of software management, including project scope management,
task prioritization, resource allocation, and architecture sufficiency
assessment. To enable the automated analyses, we propose USIM
that fills the gap between the sizing model and UML metamodels by

Figure 2: Transaction related statistics for software PM.

synthesizing information from the UML diagrams to computation-
ally support transaction identification and classification. Examples
of how the derived data affect decision making are provided.

3.1 Future Directions
To extend the capability of the automated framework to analyzing
other types of diagrams would extend the use of the tool. More data
points are needed to further evaluate the relevance of the proposed
metrics in making the software management decisions. To support
data collection, the tool needs to be implemented compatible with
the XMI files exported from different UML modeling tools.

REFERENCES
[1] Doug Rosenberg, Barry Boehm, BoWang, and Kan Qi. Rapid, evolutionary, reliable,

scalable system and software development: The resilient agile process. In Proc. of
the ICSSP’17, 2017.

[2] Barry W. Boehm. Software engineering economics. Prentice-Hall, Englewood Cliffs,
N.J, 1981.

[3] Ivar Jacobson. Object-oriented software engineering: a use case driven approach.
ACM Press ;Addison-Wesley Pub, [New York] :Wokinghams, 1992.

[4] Debasish Kundu, Debasis Samanta, and Rajib Mall. An approach to convert xmi
representation of uml 2. x interaction diagram into control flow graph. ISRN
Software Engineering, 2012, 2012.

[5] International Function Point Users Group (IFPUG). Function Point Counting Prac-
tices Manual, 4.1.1 edition, 2002.

[6] G. Karner. Metrics for Objectory. Diploma thesis. PhD thesis, University of Linkop-
ing, 1993.

	Abstract
	1 Introduction
	2 The Automated Framework
	2.1 Model Definition and Analytic Procedures
	2.2 Evaluation Metrics

	3 Conclusions
	3.1 Future Directions

	References

