
UMLx: A UML Diagram Analytic Tool
for Software Management Decisions
Kan Qi, Dr. Barry Boehm
University of Southern California, Department of Computer Science, United States

kqi@usc.edu, boehm@usc.edu

Introduction

UML diagrams have been the major artifacts of the model-based
approach of software engineering. It comprises 14 diagrams to
describe the behavioral and structural aspects of a system. Also a
subset of the diagrams have been adopted in the attempts to bring
light-weight modeling into Agile software development[6]. In
addition to its effectiveness in describing the behavioral and
structural aspects of the system being developed, system speci-
fications defined using UML diagrams are also effective indica-
tors of software size, an accurate estimate of which can further
be used to estimate effort, cost, and schedule[1] and guide de-
cision making in various areas of software project management.
For this reason, we propose a UML diagram analytic tool called
UMLx which integrates a set of automated analytic procedures
to extract information from UML diagrams based on the pro-
posed metrics to facilitate decision making in risk management,
planning, resource allocation, and system design.

Model Definition and Analytic Procedure

Parsing XMI files

The tagged elements of the XMI files are mapped into the UML
elements defined in the UML metamodels.

User-System Interaction Model Construction

Figure 1: A XMI file is first parsed to construct a user-system interaction
model. A user-system interaction model is defined by the following ele-
ments: activities (A), precedence relations (PR), system boundary (SB), sys-
tem scope (SCP), stimuli (STL), and components (CMP).

Transaction Identification

Figure 2: A sequence diagram (a) is first parsed into a control flow graph (b)
with messages as nodes and precedence relations as edges, which is then sim-
plified (c). A graph traversing algorithm is applied to identify the transactions
(d).

Transaction Classification

Figure 3: Transactions are classified into three levels of complexity with re-
spect to interface, operational, and data complexities, which are evaluated
based on the properties of the transactions.

Model Profiling
The information at the different levels: UML elements, transac-
tions, use cases, and models, is profiled based on the proposed
metrics.

Figure 4: The derived user-system interaction model is visualized by a set of
notations that represent the key elements.

UML-based Metrics

NT, SWT-I, SWT-II
Three size metrics are defined:

• NT, the number of transactions, which represents the number
of basic units of system functionality.

• SWT-I, the sum of weighted transactions (type I), for which
the transactions are weighted by TL and TD.

• SWT-II, the sum of weighted transactions (type II), for which
transactions are weighted by TL, TD, and DETs.

Figure 5: Linear regressions of project effort on the size metrics are applied
based on empirically collected project data to calibrate linear models for ef-
fort prediction

CT
Transactions are categorized by their operational characteristics
(CT). The categories indicate the different types of development
workforce that are required for a project.

Figure 6: 7 operational characteristics are identified: interface manage-
ment (INT), external input (EI), external inquiry (EQ), data management
(DM), control (CTRL), external call (EXTCLL), and external invocation
(EXTIVK). The distribution of the transactions with respect to the opera-
tional characteristics indicates the proportions of different types of develop-
ers to hire, which optimizes resource allocation strategy.

ATC, ATD
Two architectural complexity indices are defined:

• ATC, the average number of components of a transaction of
a use case, represents the expected number of system com-
ponents a developer needs to understand, create, modify, and
test when implementing a transaction of a use case.

• ATL-ATD, the product of ATC and ATD, represents the ar-
chitectural difficulty a developer needs to deal with when de-
veloping a transaction of a use case. ATD, the average trans-
action degree, represents the expected interface complexity
when implementing a transaction of a use case.

Figure 7: (a) Evaluate architectural difficulty for each use case using ATC
and ATC-ADT to maintain the efficiency of development activities. (b) Eval-
uate use case complexity with NT, SWT-I, and SWT-II. (c) Prioritize use
cases by BV/NT, BV/SWT-I, and BV/SWT-II to optimize ROI. (d) Estimated
project effort is distributed to each use case based on their evaluated com-
plexities.

Conclusions
• Introduced UML diagram analytic tool called UMLx, which

is capable of applying various analyses to derive the informa-
tion that facilitate decision making in various areas of soft-
ware project management.

• Proposed a user-system interaction model that synthesizes in-
formation from the exploited UML diagrams to support the
automated analyses. This computational model fills the gap
between the sizing model and the UML metamodels, and pre-
serves the potential of integrating other types of UML dia-
grams into the evaluation paradigm.

• Examples of how the derived data affect decision making are
provided based on an empirical study of 24 student projects.

Future Directions
• To extend the capability of the automated framework to ana-

lyzing other types of UML diagrams, for example, state ma-
chines, object analysis diagrams, component diagrams, etc,
would extend the use of the tool.

• Further evaluation of the relevance of the proposed metrics
in making the software management decisions requires more
data points to be collected.

• To support data collection, the tool needs to be implemented
compatible with the XMI files exported from different UML
modeling Tools.

References
[1] Barry W. Boehm. Software engineering economics. Prentice-

Hall, Englewood Cliffs, N.J, 1981.

[2] International Function Point Users Group (IFPUG). Func-
tion Point Counting Practices Manual, 4.1.1 edition, 2002.

[3] Ivar Jacobson. Object-oriented software engineering: a use
case driven approach. ACM Press ;Addison-Wesley Pub,
[New York] :Wokingham, Eng. ;Reading, Mass, 1992.

[4] G. Karner. Metrics for Objectory. Diploma thesis. PhD the-
sis, University of Linkoping, 1993.

[5] Debasish Kundu, Debasis Samanta, and Rajib Mall. An ap-
proach to convert xmi representation of uml 2. x interaction
diagram into control flow graph. ISRN Software Engineer-
ing, 2012, 2012.

[6] Doug Rosenberg, Barry Boehm, Bo Wang, and Kan Qi.
Rapid, evolutionary, reliable, scalable system and software
development: The resilient agile process. In Proc. of the IC-
SSP17, 2017.


