
Process-Driven Incremental Effort Estimation
Kan Qi

University of Southern California
United States
kqi@usc.edu

Barry W. Boehm
University of Southern California

United States
boehm@usc.edu

Abstract—Effort estimation has shown its value in process
decisions, such as feasibility analysis, resource allocation, risk
mitigation, and project planning. In this paper, we propose an
incremental effort estimation method that integrates phase-based
effort estimation models to solve the concerns about software
process compatibility and estimation accuracy, which one may
often have when adopting effort estimation methods for project
management.

We define the process framework for incremental effort esti-
mation in terms of the transition between the phase model that
defines the analysis and design activities, the system models that
specify a system’s behavior and structure at different levels of
detail, the sizing model that measures software functional size via
transaction analysis, the Bayesian model that statistically models
the effects that the size measurements have on project effort, and
the phase-based effort estimation models that provide improved
effort estimation accuracy over the targeted early phases.

The phase-based effort estimation models are calibrated and
evaluated based on an empirical dataset of 61 master-level student
projects from USC CSSE. The evaluation results show their
improvements in out-of-sample estimation accuracy, provide a
perspective about how estimation accuracy evolves throughout
a software process, and set the practical criteria to decide the
investment in analysis and design activities for the return in
estimation accuracy.

Index Terms—Software process management and improve-
ment, software functional size analysis, software size metrics,
effort estimation, model calibration, Bayesian analysis

I. INTRODUCTION

Effort estimation has shown its value in process decisions,
such as feasibility analysis, resource allocation, risk mitigation,
and project planning [1]. Software process compatibility and
estimation accuracy are two major concerns one may often
have when adopting an effort estimation practice [2] [3] [4]
[5].

Software process compatibility is concerned in terms of
what information can be derived from a software process
for effort estimation and how the data conversion can be
established. For example, existing effort estimation methods,
such as the use case point and function point based models
[6] [7] [8], can be applied to a software process by deriving
the information, assumed by the software sizing models of
the estimation models, from the system analysis and design
results [9]. However, extra analysis effort and special task
forces may be needed if the required information is not defined
in the analysis and design activities of a software process [10].
Besides, since the analysis and design activities are usually
exercised in a time order, which defines the logical phases

of a software process, the existing estimation methods are
only applicable at certain phases. Fig. 1, adopted from [11],
illustrates the phase constraints when applying the existing size
metrics to a software process. The constrained applicability of
the existing methods prevents the practitioners from utilizing
the updated knowledge gained over the process to achieve
better accuracy, and may create obstacles to the agility of a
software process.

Estimation accuracy directly influences the utility of the
estimation results. Different software management decisions
may require different degree of accuracy [2] [1]. For example,
strategic decisions, such as feasibility analysis, have less re-
quirement on accuracy than operational decisions, for example,
risk mitigation and project planning and staffing [2]. Better
estimation accuracy entails identifying more software size
relevant information [12], which may require extra analysis
effort if the analysis is not an integral part of the soft-
ware process definition. Therefore, to achieve better software
process efficiency, the balance between the investment in
analysis effort and the return in estimation accuracy need to
be considered when adopting an effort estimation method.

A solution to the aforesaid issues is to use a phase model
that integrates increasingly accurate software size information
over the early phases for effort estimation. This paper identifies
such a sequence of phases whose content provides increasingly
accurate effort estimates. We summarize the advantages of the
proposed incremental effort estimation method as follows:

1) Synchronizes the lifecycle of effort estimation with the
lifecycle of a software project to allow the effort estima-
tion practice to access the current analysis and design
results and drive the current-stage project management
decisions, which ensures software process compatibility.

2) Reuses the knowledge gained from the analysis and
design activities at the earlier phases and incrementally
integrates the later-phase information for effort estima-
tion to boost the software process efficiency.

3) Keeps the effort estimation results updated with the
best estimation accuracy possible to the knowledge at
a certain stage.

4) Provides freedom of choice of conducting effort estima-
tion at a specific phase or for a desired level of accuracy
to improve the dynamics of a software process.

Our incremental effort estimation approach is defined into
two strata: the process framework and the calibration method

of the phase-based effort estimation models. The process
framework is defined in terms of the transition between a
series of typical software project models to lay the theoretical
foundation. The models involved are: I. the phase model that
defines the analysis and design activities adopted to specify
the target system; II. the system models, as the results of the
analysis and design activities, provide software size relevant
information; III. the software sizing model that continuously
measures software functional size by applying transaction
analysis at the early phases; IV. the Bayesian model that
statically models the posterior distributions of the effects that
the size measurements have on project effort by considering
both the prior beliefs as well as the sample information. V.
the effort estimation models that provide phase-based effort
estimates with improved accuracy. The calibration method
provides the technical aspects of the process, which include the
definition of the classification function of the transactions, the
Markov Chain Monte Carlo (MCMC) algorithm for calibrating
the parameters, the iterative accuracy optimization process.
With this structure, we aim to provide the adopters with
two points of modification, such that the changes can either
be made to the incremental effort estimation process to fit
specific software processes and engineering environments, or
the proposed statistical analyses to better calibrate the effort
estimation models. Here we summarize the contributions of
this paper:

1) Propose a process framework to lay the theoretical
foundation for incremental software size analysis for
project effort estimation.

2) Define specific size metrics that can be applied at early
phases of a project, and the algorithm that calibrates
effort estimation models defined using the metrics.

3) Provide three effective phase-based effort estimation
models, which are calibrated and evaluated using an
empirical dataset of 61 projects, and discuss the im-
plications of the evaluation results on software process
management.

This paper is structured as follows: in section II, we discuss
the related work; section III introduces the process framework
for incremental effort estimation; section IV presents the
model calibration method and results; in section V, we evalu-
ate the effort estimation models for their improvements in out-
of-sample estimation accuracy and discuss their implications
on software process management; section VI discusses the
threats to validity; section VII concludes the research.

II. RELATED WORK
To utilize the gradually better understanding about the

personnel, platform, process, and product aspects during the
progress of a project, COCOMO®II integrates two phase-
based sub-models: the early-design and post-architecture mod-
els [2] [1] to provide early estimates for strategic decisions and
later estimates with better estimation accuracy for operational
decisions. Following the same idea of utilizing information
available throughout the early phases for effort estimation,
our approach focuses on modeling the phenomenon that the

Fig. 1. Applicability of the Existing Size Metrics [11]

behavior and structure of the target system are specified
in more detail over the time by the early-stage analysis
and design activities. We derive the software functional size
relevant information from the system specifications for effort
estimation. Therefore, our estimation method and evaluation
results can complementarily serve COCOMO®II’s objectives.

Many software functional size metrics have been proposed
in the past for project effort estimation, among which IF-
PUG, COSMIC, and Mark-II function points are the most
widely adopted ones [7] [13] [8] [14]. Those functional sizing
methods model a software system in terms of transaction
functions and data functions of different types. Transaction
functions and data functions are identified as the elementary
processes and logical data groups respectively. Their relative
influences on software size are determined by the associated
data elements. The software functional size is calculated as
the sum of weighted transaction and data functions. Although
our proposed size software sizing model shares the same
functional form as the existing function point methods, for the
use of the sum of weighted transactions, to measure software
functional size, our method of weighting each transaction
is fundamentally different. We identify three aspects of a
transaction - the operational, structural, and data complexities
- to define the classification function that classifies the trans-
actions into different complexity levels and distinguishes their
influences on project effort. This functional form serves our
purpose of incremental effort estimation, which is a feature
lacked in the existing software functional size metrics.

We employ a Bayesian model to statistically model the
effects that transactions of different complexity levels have on
project effort. Bayesian analysis has been similarly adopted
by COCOMO®II to combine both domain experience and
empirical study results about the effects that different cost
drivers have on project effort [2] [15]. The use of Bayesian
analysis corrected the unintuitive calibration results and im-
proved effort estimation accuracy [15] [16]. Different from
the analytical approach used in COCOMO®II’s calibration
process, we use MCMC sampling method to simulate the
full posterior distributions of the parameters, which allows the
access of statistics such as means, variances, and confidence
intervals to better assess the quality of the estimation models.

Fig. 2. The Underlying Models for Incremental Effort Estimation

III. MODEL DEFINITION
In this section, we define the process framework in terms

of the transition between a series of software project models
to lay the theoretical foundation of our incremental effort
estimation method. The transition includes the information
about what models we use, what processes we apply, and
what models we derive for incremental effort analysis. The
transition is depicted in Fig. 2. In the following sections,
we provide brief discussions about the phase model and
the software system models as they are summarized from
the common methods, while elaborate on the definitions of
the proposed transaction-based software sizing model, the
incremental effort estimation models, and the Bayesian model.

A. The Phase Model

For incremental effort estimation, we tend to understand the
derivation process of the system specifications that define the
scope of a project at the early stage. The effective activities
like requirements elicitation, system analysis, and architectural
design are widely adopted by many successful software pro-
cesses, for example, Use Case Driven Approach [17], ICSM
[18], Resilient Agile [12], Rational Unified Process [19], etc.
Some activities may be emphasized by certain processes while
tailored by others to keep the balance between agility and
rigorousness [20]. These activities are usually exercised in
the time order, which define the logical phases of a project.
Therefore, by abstraction, our targeted early phases for effort
estimation are: requirement elicitation phase, system analysis
phase, and architectural design phase. For the iterative agile or
hybrid processes, those activities are distributed into iterations
[18], therefore, the three phases can be regarded as the early
phases of each iteration, and the effort estimation models de-
fined based on the phases can be applied within the iterations.

B. The Software System Models

The results of the analysis and design activities are the
system models that specify a software system at different
levels of detail. For example, a system can be modeled by
use cases as the interactions between the actors and a system
by the requirement elicitation activity [17], as the components
and their interactions by system behavior analysis for certain
functional requirements [12], or in terms of methods and data
elements defined in the platform specific architectural designs

[21] [17] [18]. We utilize the information concerning the
behavioral, structural, and data aspects of a software system,
derived from the system models, to continuously analyze
software functional size for incremental effort estimation.

C. The Transaction-based Sizing Model

To support incremental analysis of software functional
size, we use “transaction” as the measurement unit, for its
recurrence in the early-phase activities and its incrementally
detailed definitions provided by different system models [17]
[22]. The definition of transaction we adopt is given in
Definition 1. The functional form of the proposed software
sizing model, presented in (1), is defined in terms of the sum
of weighted transactions.

Definition 1: (Transaction) A transaction is a sequence of
operations of system components to fulfill a type of interaction
between an actor and a system.

Size =
∑
t∈T

wt (1)

The weights reflect the effects that transactions of different
complexity levels have on project effort. To determine the
complexity level of a transaction, we tend to identify the fac-
tors that influence the effort for developing a transaction. For
example, the number of operations that realize a transaction,
the number of system components upon which the transaction
is implemented, and the number of data element types that
are associated with a transaction. Those attributes reflect the
operational, structural, and data complexities of a transaction,
which suggest the effort of understanding, implementing, and
testing a transaction. The construction of the sizing model is
supported by two transaction analytical operations - transac-
tion identification and transaction classification.

1) Transaction Identification: Transaction identification in-
volves the techniques of identifying transactions and their as-
sociated attributes from different analysis and design artifacts.
Fig. 3 provides the graphic representation of the transaction
model that we identify from sequence and class diagrams for
software sizing using the method proposed in our previous
research [9]. We use the following metrics to characterize the
complexity of a transaction.

1) Transaction Length (TL), measures operational com-
plexity of a transaction, by counting the number of
the operations that realize a transaction at the system
component level.

2) Transaction Degree (TD), measures the structural com-
plexity of a transaction, using the average number of
service methods of the components that implement a
transaction.

3) Data Element Types (DETs), measures data complexity
of transaction, by counting the number of data element
types associated with a transaction.

To construct the transaction model, different types of UML
diagrams can be employed. For example, a transaction can be
identified as a set of steps from a use case description [23],
as a set of activities from an activity diagram [21], and as an

Fig. 3. The Transaction Model for Software Sizing

independent path from a robustness diagram [22], and as a
sequence of messages identified from a sequence diagram [9],
to realize a type of user-system interaction. Those artifacts pro-
vide different levels of detailed description about a transaction,
which determine the number of attributes we can use to define
the classification function. Section III.D provides examples of
identifying transactions and their associated attributes from
different types of artifacts.

2) Transaction Classification: To classify transactions, we
define the classification function based on the attributes of a
transaction, which maps the multi-dimensional representation
of a transaction into uni-dimensional representation in terms
of the complexity levels. In section IV.B, we will introduce a
classification function based on Manhattan distance to classify
transactions into different complexity levels.

Transactions are differentiated by the complexity levels
for their effects on development effort. Different weights are
applied in the size metrics proposed in section III.D to model
the effects. The weights can either be determined based on
expert judgment, or statistically calibrated using empirical
datasets. In section IV.C, we introduce a Bayesian approach
to calibrate the weights in considering both experts’ domain
knowledge and sample information.

D. Incremental Effort Estimation Models

To incrementally estimate project effort, three software
functional size metrics are defined to be countable at the three
targeted early phases. For each of the size metrics, we propose
an effort estimation model to estimate project effort at the
corresponding phase.

1) The Phase-based Software Size Analysis: Since different
methods of identifying transactions provide different levels of
detailed description about a transaction, which affect the num-
ber of attributes we can employ to classify the transactions.
The proposed three size metrics employ the attributes of a
transaction that can be measured at a certain phase. The size
metrics share the same functional form as described in (1),
while parameterized by different classification functions and
weighting schemes. The size metrics are defined as follows:

SWT-I =
∑
t∈T

1 (2)

SWT-I (Sum of Weighted Transactions-I) adopts the sim-
plest form of (1) by applying 1 to every transaction without
differentiating the complexity of the transactions, which is
simply the number of transactions. SWT-I is countable at
the requirement elicitation phase by counting the number of
user-system interactions from the use case narratives or the
converted activity diagrams [23] [21].

SWT-II =
∑
t∈T

w∗(TD(t), TL(t)) (3)

SWT-II can be applied at the analysis phase when the
decomposition of system functionality into components and
connectors is finished. TL and TD can be measured at this
phase. For example, TL can be counted as the number of
connectors that realize a transaction, and TD can be counted as
the average number of inbound connectors of the components
that implement a transaction. Our previous research [22] that
identifies transactions as independent paths from robustness
diagrams [17] can be used to derive the information. Compo-
nent diagrams [24] can be similarly used by identifying the
components and connectors that realize the transactions. The
weight applied to a transaction is determined by TL and TD.

SWT-III =
∑
t∈T

w∗∗(TD(t), TL(t), DETs(t)) (4)

At the design phase, with the detailed architecture design
artifacts being available, for example, sequence and class
diagrams, the connectors between the components are mapped
into the methods with arguments and return values represent-
ing the referenced data elements. Based on this incremental
information, we can further consider the influence from the
data complexity on project effort. Specifically, SWT-III con-
siders the number of data element types (DETs) associated
with a transaction when applying the weights. Our previous
research [9] provides an automated method of identifying a
transaction and its associated attributes (TL, TD, and DETs)
from sequence and class diagrams, for which the sum of the
number of argument types and the number of return value
types for all the methods that implement a transaction is
counted as DETs. TL and TD are similarly calculated as SWT-
II.

2) The Parametric Effort Estimation Model: The effort
estimation model models the effect that one unit of size
measurement has on project effort, which can be generally
defined as (5).

ProjectEffort = α ∗ SoftwareSize (5)
Plugging the functional size metrics into (5), we derive the

generic form of the incremental effort estimation model as (6).

ProjectEffort = α ∗
∑
t∈T

∑
i∈{1,...,|W |}

Wi ∗ Ii(fcmplx(t))

(6)
Where, α is the effort adjustment factor,
T is the set of transactions,
W are the weights assigned to the |W | complexity levels,

Fig. 4. The Model Calibration Process

Ii(x) is the indicator function,
fcmplx(t) classifies a transaction into a level of complexity.
W and fcmplx(t) are specifically defined for different

phases based on the number of transactional attributes mea-
surable at a certain phase. The phase-based effort estimation
models iteratively evaluate the transactional complexity over
the early phases to provide incremental effort estimation.

E. The Bayesian Model

To calibrate the parameters of effort estimation models, we
propose a Bayesian model to model the posterior probabilities
of the parameters. Bayes’ theorem described in (7) shows
the process of updating the prior probability P (A) of a
random variable A with the likelihood P (B|A) to generate
the posterior probability P (A|B) of A.

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A) ∗ P (A)

P (B)
(7)

Following the Bayes’ theorem, we model the joint posterior
probability p(a,W |x, y) of the weights W and the effort
adjustment factor α as proportional to the product of the
likelihood p(x, y|a,W) and the prior probabilities of the
parameters: p(a) and p(W). The prior probabilities represent
our prior beliefs about how the parameters affect project effort,
while the likelihood represents how likely the observed effort
data can be explained by the parametric effort estimation
model defined in (6). The Bayesian model of the parameters
is summarized in (8).

p(a,W |x, y) ∝ p(x, y|a,W) ∗ p(a) ∗ p(W) (8)
In section IV.C, we run Metropolis-Hastings MCMC al-

gorithm to sample the joint posterior distribution of W and
α based on the Bayesian model, and use the means of
the marginal posterior distributions as the estimates of the
parameters.

IV. MODEL CALIBRATION

To calibrate the parameters of the proposed effort estimation
models, we essentially answer the following two research
questions:

1) What is the optimal classification of the transactions?
2) What weights should be assigned to the different com-

plexity levels?
To answer the research questions, for each phase-based

estimation model, we follow the iterative process depicted

in Fig. 4, which has the following three major steps in each
iteration:

1) Classify the transactions into different complexity levels
by the classification function defined based on the dis-
cretized empirical distributions of the transactions over
the considered dimensions.

2) Calibrate the weights applied to the different complexity
levels using Bayesian analysis that updates our prior
beliefs with the sample information derived from our
empirical dataset.

3) Evaluate the out-of-sample effort estimation accuracy
using the chosen estimation accuracy measure.

The three steps are iteratively executed by trying different
degree of discretization of the dimensions considered by a
phase-based estimation model, and we use the classification
function and weighting schema that provide the best accuracy
measurement as the final estimates of its parameters. In the
following sections, we elaborate the process through the case
of the three dimensions - TL, TD, and DETs - used by SWT-
III, while summarize the results for SWT-I and SWT-II.

A. The Data Set

The dataset we use to calibrate and evaluate the effort
estimation models comprises 61 master’s computer science
student projects from USC’s Center for Systems and Software
Engineering (CSSE).

The projects lasted for 4-8 months and were developed
during 2011-2018. The software products range from 1-10
KSLOC and are of different types: web applications, mo-
bile applications, mobile games, information systems, and
scientific tools, developed based on the requirements given
by real-world clients from start-ups, non-profits, education
institutes, government agencies, etc. The projects followed use
case driven, plan driven, and agile methodologies with 5-8
members on the teams, who took specific roles, such as project
manager, designer, architect, quality focal point, developer, and
tester. The clients are closely involved to test and evaluate the
products until their acceptance.

Project effort was recorded through Jira tickets and weekly
effort reports, ranging from 100-3000 person hours. In total,
5797 transactions and their associated properties are assessed
using the method introduced in [9].

B. Multi-dimensional Classification

To classify the transactions over the three dimensions - TL,
TD, and DETs, we first discretize the distributions of the
transactions over the individual dimensions using the quantile-
based discretization strategy. This provides a set of cut points
over the dimensions. Based on the cut points, a classification
function is defined to classify the transactions into different
complexity levels.

1) Quantile-based Discretization: We first fit the gamma
distribution function to the empirical frequency distribution
for each of the three dimensions using maximum likelihood
method, in order to find the distribution of the underlying
population [25]. Gamma distribution is chosen based on its

TABLE I
GAMMA (Γ) FITTING AND CUT POINTS FOR TL, TD, AND DETS

TL TD DETs

Γ Fit α: 6.54, β: 1.16, KS: p<0.01 α: 3.65, β: 0.70, KS: p<0.01 α: 1.66, β: 0.17, KS: p<0.01

C.Pnts. C1
1 C1

2 C1
3 C1

4 C1
5 C1

6 C1
7 C2

1 C2
2 C2

3 C2
4 C2

5 C2
6 C2

7 C3
1 C3

2 C3
3 C3

4 C3
5 C3

6 C3
7

Cut1 0.0 Inf -/- -/- -/- -/- -/- 0.0 Inf -/- -/- -/- -/- -/- 0.0 Inf -/- -/- -/- -/- -/-
Cut2 0.0 5.3 Inf -/- -/- -/- -/- 0.0 4.8 Inf -/- -/- -/- -/- 0.0 8.0 Inf -/- -/- -/- -/-
Cut3 0.0 4.5 6.3 Inf -/- -/- -/- 0.0 3.7 6.0 Inf -/- -/- -/- 0.0 5.4 11.2 Inf -/- -/- -/-
Cut4 0.0 4.0 5.4 6.9 Inf -/- -/- 0.0 3.2 4.8 6.7 Inf -/- -/- 0.0 4.3 8.0 13.4 Inf -/- -/-
Cut5 0.0 3.8 4.8 5.9 7.3 Inf -/- 0.0 2.9 4.1 5.4 7.3 Inf -/- 0.0 3.6 6.4 9.8 15.1 Inf -/-
Cut6 0.0 3.6 4.5 5.3 6.3 7.6 Inf 0.0 2.6 3.7 4.8 6.0 7.7 Inf 0.0 3.1 5.4 8.0 11.2 16.4 Inf

Fig. 5. Transaction Classification over Discretized Dimensions

goodness of fit to our empirical dataset introduced in sec-
tion IV.A, in comparison with other typical right skewed
distribution functions. In our experiment, we tried gamma
distribution, log-normal distribution, log-logistic distribution,
and Weibull distribution, and gamma distribution provides the
best goodness of fit.

We also test the significance of goodness of fit of
gamma distribution function using the bootstrap version of
Kolmogorov-Smirnov (K-S) test [26], and the p-values being
less than 0.01 suggest goodness of fit is significant. The shape
parameter α and the rate parameter β of the fitted gamma
distributions, and p−values from the K-S tests are provided in
Table I.

We then discretize the gamma distribution functions by 1-
6 quantities with 6 cutting operations Cut1,...,Cut6. Each
cut operation Cutτ generates a set of cut points C1,...,Cdτ+1

for a dimension d (d ∈ {TL, TD,DETs}) to define τ
equal probability bins Bd1 ,...,Bdτ , where the transactions are
categorized to generate a marginal discretized distribution. The
cut points for the three dimensions, generated by the 6 cutting
operations, are presented in Table I.

2) The Classification Function: The subscript (τ) of each
bin (Bdτ) represents the complexity level of a transaction with
respect to the dimension d. The higher number the subscript
is, the more complex the transaction is rated in that aspect.
We then combine the bins of the three dimensions into a joint
bin to classify the transactions over multiple dimensions. To
combine the bins of the individual dimensions, we introduce
the classification function fcomplx(t) defined based on the
Manhattan distance between the origin and the coordinates

of a transaction t, defined over the discretized dimensions.
fcomplx(t) is defined in (9).

fcmplx(t) = manhattan-distanceD(t)− |D|+ 1

=
∑
d∈D

Bd(t)− |D|+ 1 (9)

Where, D = {d1, d2, ..., dn}, represents the individual dis-
cretized dimensions. |D| represents the number of dimensions
that characterize a transaction. Bd(t) returns the index of the
bin into which a transaction t is categorized for dimension d.
The Manhattan distance is shifted with a constant |D| − 1 to
make the complexity levels starting from 1. This function maps
measurements of complexity for the individual dimensions
into a complexity level Lx. The larger Manhattan distance
between a transaction and the origin, the higher complex level
the transaction is rated at. This classification function also
provides max number of the complexity levels, which can be
calculated by (10).

max(fcmplx) =
∑
d∈D

|Bd| − |D|+ 1 (10)

Where, |Bd| is the number of bins for dimension d.
In our case, we use the TL, TD, and DETs dimensions to

characterize the transactions, and the measurements for the
three dimensions are used to determine the complexity level
of a transaction. For example, under discretization of 4 bins
for the three dimensions, the max number of complexity levels
max(fcmplx) can be calculated by (11).

max(fcmplx) = 4 + 4 + 4− 3 + 1 = 10 (11)

A transaction t that is rated 6, 7, and 4 for TL, TD, and
DETs respectively, has coordinates of {3, 4, 1} over the dis-
cretized dimensions according to Table I and can be classified
into the complexity level of 6 by Eq. (12).

fcmplx10(t) = 3 + 4 + 1− 3 + 1 = 6 (12)

Exemplary frequency distributions of the classified transac-
tions are provided in Fig. 6, which are derived by classifying
the transactions in our empirical dataset with 1-6 bins of
discretization of the TL and TD dimensions. As we can see
from the Fig. 6, the distributions are well balanced.

Fig. 6. Transaction Distributions over Complexity Levels

C. Weighting using Bayesian Analysis

The weights W assigned to the complexity levels and the
effort adjustment factor α are statistically modeled by (8),
introduced in section III.E. In the following sections, we
will introduce the definitions of the major components of the
Bayesian model and our approach of estimating the parameters
using Metropolis-Hastings MCMC algorithm.

1) The Priors: The Bayesian model employs the priors
on the expected values of the weights W assigned to the
complexity levels, the covariance matrix Σ of W , the effort
adjustment factor α, and the standard deviation σ of the
residuals. Based on the widely observed rule of “diseconomy
of scale” in project effort estimation studies [1] [27], we model
the hypothetical non-linearly increasing effects that different
complexity levels have on project effort using Fibonacci se-
quence, which is, the prior expected values of weights Ŵ are
assigned with numbers from Fibonacci sequence. Fibonacci
sequence is similarly used by Story Points [27] to decide the
relative efforts for the tasks of different complexity levels.
An example of the Fibonacci sequence numbers we use is as
follows:

1, 2, 3, 5, 8, 13, ... (13)
The variances of the weights ∆ are set to (1/3 ∗ (wi −

wi−1))2 to avoid the potential overlaps in the final calibration
results of the parameters. The weights are modeled as inde-
pendent to each other, therefore the prior covariance matrix Σ̂
is diagonalized with ∆.

For the priors on α and σ, we use non-informative priors
such that the parameters would be largely determined by
the sample information [28]. For instance, we use uniform
distribution (unif(0, 30)) for α and Jeffreys Prior (1/σ) for
σ [28].

2) The likelihood function: To derive the likelihood of the
parameters, we run multiple linear regression analysis of (14)
on our empirical dataset, which is the expanded form of (6).

Effort = α∗(w1TL1
+w2TL2

+w3TL3
+ ...+wnTLn

) (14)
where, W = {w1, w2, ..., wn} represents the weights that

should be assigned to the complexity levels L1, L2, ..., Ln,
and α represents the effort adjustment factor.

Algorithm 1 Posterior Estimation of W and α
Data: {yi, xi}ni=1 - regression data;
Ŵ - prior means of weights;
Σ̂ - prior covariance matrix of weights;
Result: The posterior estimates of the weights W ∗ and the
effort adjustment factor α∗;
1. Initialize:
2. pick an initial state ε0 = {α0,W0, σ0}; set t = 0;
3. Iterate: t < 100000
4. Propose: randomly generate a candidate state ε′ =
{α′,W ′, σ′}, such that: α′ ∼ norm(αt, c1), W ′ ∼
norm(Wt, c2), σ′ ∼ norm(σt, c3);
5. Calculate the acceptance probability:
6. A(ε′, εt) = posterior(ε′t)/posterior(εt),
7. where posterior(ε) = prior(ε) ∗ likelihood(ε);
8. prior(ε) = punif(ε.α, 0, 15) ∗ pnorm(ε.W, Ŵ , Σ̂) ∗
(1/ε.σ);
9. likelihood(ε) =

∏n
i=1 pnorm(yi, ε.α ∗ ε.W ∗ xi, ε.σ).

10. Accept or Reject:
11. generate a uniform random number u ∈ [0, 1];
12. if u ≤ A(ε′, εt), set εt+1 = ε′;
13. if u > A(ε′, εt), set εt+1 = εt;
14. Increment: set t = t+ 1;
15. Output:
16. remove the first 5000 iterations as burnin;
17. {W ∗, α∗} = means(ε.W , ε.α);

The likelihood of the parameters W and α is calculated as
the probability of the residuals under the normal distribution
norm(0, σ). The residuals are calculated as the differences
between the actual effort and the effort estimated by (14).
Therefore, based on our empirical dataset, the likelihood of
the parameters can be calculated.

3) Simulating Posterior Distributions Using MCMC: Based
on the Bayesian model, we run Metropolis-Hastings (H-M) al-
gorithm to simulate the joint posterior probability distribution
of α and W . The algorithm comprises three major steps: I. it
takes a random starting point ε0 from the parameter space as
the current state εt; II. it iteratively takes random moves ε′,
generated by a proposal function, around εt in the parameter
space; III. if the posterior probability posterior(ε′) evaluated
at ε′ is higher than εt’s posterior probability posterior(εt),
ε′ would be accepted as the next state εt+1. These three
steps are iterated by a fixed number of times to generate
a chain of random states. M-H algorithm ensures that this
chain of sampled states ε converges to the posterior probability
distribution of the parameters [29].

Algorithm 1 summarizes our approach of generating pos-
terior distributions using M-H algorithm. We use Gaussian
density functions in the proposal function (line 4 of Algorithm
1). For example, c1, c2, and c3 are standard deviations of the
normal distributions used to generate random candidate states,
which, in our case, are set 0.1, 1/5 ∗ (wi − wi−1), and 3
respectively. Those are the hyper parameters of the algorithm,
which can be locally tuned for the best performance. To
ensure the chain of sampled states converges to the actual

Fig. 7. Posterior Distributions of the Parameters

posterior distribution, we run 100000 iterations with the first
5000 sampled states removed as the burn-in, and observe
the acceptance rate to make sure it falls into the reasonable
range of 20%-50% as suggested in [29]. The means of the
sampled marginal distributions are used as the estimates of the
parameters, and the standard errors are calculated to assess the
variability of the parameters.

An example of the marginal posterior distributions of the
parameters are given in Fig. 7, in which the transactions
are classified into 7 complexity levels using (9) under the
discretization of 3 bins for the three dimensions using the
cut points provided in Table I. Correspondingly, 7 marginal
posterior distributions of the weights are sampled using M-H
algorithm. The means and the standard errors of the posterior
distributions are calculated and annotated in Fig. 7.

D. Iterative Evaluation of Estimation Accuracy
To find the optimal classification and weighting schema,

we evaluate the out-of-sample estimation accuracy in terms
of PRED(.25) under different ways of classification, defined
by 1-6 bins of discretization of the dimensions employed
by the effort estimation models. PRED(.25) is used for its
superior reliability in selecting the true model and robustness
to outliers compared with the other typically used accuracy
measure MMRE [30]. As defined in (15), PRED(x) measures
the percentage of the estimates within a threshold x in terms
of MRE. High values of PRED(x) are desirable. This statistic
shows how often estimates can be expected to be within an
acceptable margin of error.

PRED(x) =
1

N

N∑
i=1

{
1, if MREi ≤ x,where MREi =

|yi−ŷ|
yi

0, otherwise
(15)

In each iteration of classification, the empirical dataset is
separated into 10 folds to exercise the cross-validation process
in 10 runs. The cross-validation process tests the ability of
the trained models in predicting new cases [25]. Specifically,
in each run of the cross-validation, we use 9 folds as the
training set to exercise the steps introduced in section IV.B
and section IV.C to calibrate the parameters, and use 1 fold
to evaluate effort estimation accuracy of the calibrated model
using PRED(.25). We use the average of the PRED(.25) results
of the 10 runs as the final measurement of accuracy.

Fig. 8. Evaluating PRED(.25) under 1-6 Bins of Discretization

For 6 iterations of classification, 6 effort estimation models
are defined, calibrated, and evaluated. We rank the models
in terms of their PRED(.25) measurements to indicate their
performance. The parameters under the binning that provides
the highest PRED(.25) measurement are used as the final set
of values that define a phased-based effort estimation model.

E. The Calibration Results

The accuracy measurements for SWT-II and SWT-III cal-
culated over 1-6 binning of the considered dimensions are
presented in Fig. 8. Since SWT-I only uses the number
of transactions as the size metric, all the transactions are
classified into one complexity level and no iteration is applied.
We can see that the best binning for SWT-II is 4 and the
best binning for SWT-III is 3, since they provide the highest
PRED(.25) values in comparison with other models.

The calibration results for the parameters of the phase-
based effort estimation models are presented in Table II. For
SWT-I, the classification function f1cmplx1

(t) only returns one
complexity level, and the weight w1 for the complexity level
and the effort adjustment factor α are calibrated through
Bayesian analysis. For SWT-II, since the best binning is 4,
we have total 7 complexity levels. The two sets of cut points
C1,...,C5, the classification function f2cmplx7

(t), the weights
w1,...,w7, and the effort adjustment factor α are provided
to define the effort estimation model. For SWT-III, similarly
we have f3cmplx7

(t) defined using the 3 sets of cut points
C1,...,C4 generated by 3 binning of the three dimensions. The
weights w1,...,w7 and the effort adjustment factor α are also
provided. Based on the simulated posterior distributions, we
provide the standard errors (SE.) and 95% confidence intervals
(CI.L∼CI.U) of the parameters in Table II for the model
adopters to construct interval estimates of project effort [1].

V. MODEL EVALUATION
In this section, we present the accuracy evaluation results

for the proposed effort estimation models and discuss their
implications on software process management.

A. Comparison with IFPUG Function Points

To show the effectiveness of the proposed effort estimation
models, we compare them with a baseline effort estimation
model defined based on the widely used function point size
metric IFPUG [7], which is given in (16).

Effort = α ∗ IFPUG (16)
The IFPUG function point measurements are derived from

the sequence and class diagrams of the 61 projects using

TABLE II
THE CALIBRATED MODEL PARAMETERS

Parameters SWT-I SWT-II SWT-III
Adj. Fctr. Est. SE. CI.L CI.U Est. SE. CI.L CI.U Est. SE. CI.L CI.U

α 4.87 1.12 3.15 7.16 0.80 0.13 0.55 1.09 1.57 0.21 1.21 2.02
Cut Pnts. C C1 C2 C3 C4 C5 C1 C2 C3 C4

TL -/- 0 4.0 5.4 6.9 Inf 0 4.5 6.3 Inf
TD -/- 0 3.2 4.8 6.7 Inf 0 3.7 6.0 Inf

DETs -/- -/- -/- -/- -/- -/- 0 5.4 11.2 Inf
Cls. Func. f1cmplx1

(t) f2cmplx7
(t) f3cmplx7

(t)

1
∑

d∈{TL,TD} d(t) − 1
∑

d∈{TL,TD,DETs} d(t) − 2

Weights Est. SE. CI.L CI.U Est. SE. CI.L CI.U Est. SE. CI.L CI.U
w1 1.28 0.30 0.81 1.91 1.20 0.70 0.35 2.48 1.16 0.51 0.17 2.11
w2 -/- -/- -/- -/- 1.77 0.68 0.45 3.16 1.77 0.62 0.74 3.24
w3 -/- -/- -/- -/- 2.88 0.44 2.01 3.75 2.99 0.41 2.19 3.80
w4 -/- -/- -/- -/- 4.42 0.87 2.78 6.17 4.45 0.87 2.79 6.21
w5 -/- -/- -/- -/- 7.15 1.42 4.56 9.97 5.52 1.08 3.57 7.98
w6 -/- -/- -/- -/- 11.87 2.27 7.86 16.43 11.55 2.42 6.59 15.97
w7 -/- -/- -/- -/- 13.19 2.82 8.71 19.76 18.32 3.82 11.85 26.15

Fig. 9. Comparison over PRED(.01) - PRED(.50)

the method introduced in [31]. We evaluate the out-of-sample
accuracy of the three proposed models and the IFPUG model
using the similar 10-fold cross-validation process introduced
in section IV.D. The difference is that we evaluate the out-of-
sample accuracy from PRED(.01) to PRED(.50) for the four
models. The evaluation results are presented in Fig. 9, which
provides a clear view about the performance of the models.
As we can observe from Fig. 9, SWT-II and SWT-III provide
noticeable improvements over the IFPUG model, while SWT-I
provides comparable performance as IFPUG. This comparison
with the IFPUG model shows the effectiveness of our proposed
phase-based effort estimation models.

B. Relative Improvements in Estimation Accuracy

Based on the accuracy evaluation results presented in Fig.
9, we further compare the relative improvements in accuracy
for the proposed effort estimation models. We take three
points from Fig. 9, and present them in Table III. As we
can see, SWT-III provides the best performance, since it
provides the highest values for both PRED(.15), PRED(.25),
and PRED(.50). SWT-II also provides certain degree of im-
provement over SWT-I for the three accuracy measures. We
still use PRED(.25) to make the conclusion about their relative

TABLE III
PRED(.15), PRED(.25), PRED(.50) FOR THE COMPARATIVE MODELS

Model PRED(.15) PRED(.25) PRED(.50)

SWT-I 14.5% 23.8% 46.2%
SWT-II 15.1% 27.8% 53.5%
SWT-III 28.0% 37.1% 57.1%
IFPUG 14.7% 23.8% 38.5%

improvements in estimation accuracy for the reasons men-
tioned in Section IV.D. Therefore, under PRED(.25), SWT-
III outperforms SWT-II by 9.3%, while SWT-II outperforms
SWT-I by 4.0%. We conclude that the inclusion of data
complexity in transaction classification significantly improves
estimation accuracy and the later-phase models provide better
effort estimation accuracy than the earlier-phase models.

C. Implications on Software Process Management

The implications of the accuracy evaluation results on
software process management are two-fold. First, it provides
a clear understanding about how much accuracy can be
improved by integrating information available in the later
phases. If a level of estimation accuracy is desired for certain
project management decisions, project managers can choose to
integrate the corresponding phase(s) of effort estimation into
their current system analysis and design practice. Second, if
accuracy level is not mandatory, one may need to balance
between the investment of analysis effort and the return
in estimation accuracy when they make the decision about
what analysis to adopt for effort estimation. The evaluation
results provide the criteria for such a trade-off analysis. For
example, as Jacobson mentioned in [17], the effort required
for designing implementation environment specific classes is
commonly 5-10 times more than the effort required for the
classes derived through domain object analysis. Adopting the
sequence and class diagram based design activities, or other
design activities at similar levels of detailedness, may not be
worth the investment, if the goal is only to provide data for
effort estimation, since the return on investment ratio of doing
such design activities is merely 13%-27% of doing domain

object analysis, in considering SWT-III is relatively about 33%
better than SWT-II.

VI. THREATS TO VALIDITY

The main threat to validity of our proposed method and
the experimental results is the potential bias that exists in
the dataset used for model calibration and evaluation, which
may come from the following two aspects. First, although the
proposed transaction analysis is intended for different types
of analysis and design artifacts, we only used the method
described in [9] to identify transactions from sequence and
class diagrams. The parameters may need to be updated
for other types of artifacts. Second, the studied projects are
considered small projects for the delivered software products
range from 1-10 KSLOC and are developed by 5-8 team
members. Therefore, the accuracy evaluation results presented
in this paper may not be directly applicable to larger projects.
Those weaknesses can be mitigated by collecting more data
points from a wider range of software projects and more types
of analysis and design artifacts, so that we can re-calibrate the
models and evaluate the statistical significance of the accuracy
improvements.

VII. CONCLUSIONS

To summarize, we provide a process framework and an
incremental effort estimation method that provides phase-
based effort estimates by continuously integrating software
functional size relevant information over the early phases
of a software project. The process framework is defined in
terms of the transition of a series of software project models.
Based on the framework, three phase-based effort estimation
models are defined and calibrated through Bayesian analysis
of an empirical dataset of 61 master’s student team projects.
We evaluate the out-of-sample accuracy of the three models
using 10-fold cross-validation and show the improvements in
estimation accuracy in comparison with IFPUG function point
based model. We also briefly discuss how the phase-based
models can facilitate the managerial decision of selecting the
estimation models that meet the expectations of estimation
accuracy or the return on the investment in analysis effort.

The future work includes integrating more transaction iden-
tification techniques into the framework to identify trans-
actions from more types of analysis and design artifacts
and software projects, such that we can reduce the the bias
discussed in section VI. The other side of the trade-off analysis
is the quantitative results for the efforts of doing different kinds
of analysis and design activities, with which we are able to
provide a precise equation for the trade-off analysis.

REFERENCES

[1] Barry W Boehm. Software engineering economics. In Software pioneers,
pages 641–686. Springer, 2002.

[2] Barry W. Boehm. Software cost estimation with Cocomo II. Prentice
Hall, Upper Saddle River, NJ, 2000.

[3] B. Anda, E. Angelvik, and K. Ribu. Improving estimation practices by
applying use case models. In PROFES, pages 383–397. Springer, 2002.

[4] Steven D Sheetz, David Henderson, and Linda Wallace. Understanding
developer and manager perceptions of function points and source lines
of code. Journal of Systems and Software, 82(9):1540–1549, 2009.

[5] Bruce Lo and Xiangzhu Gao. Assessing software cost estimation
models: criteria for accuracy, consistency and regression. Australasian
Journal of Information Systems, 5(1), 1997.

[6] Gustav Karner. Resource estimation for objectory projects. Objective
Systems SF AB, 17, 1993.

[7] A.J. Albrecht. Function point analysis. In Encyclopedia of Software
Engineering, volume 1, pages 518–524. Wiley, 1994.

[8] Charles R Symons. Software sizing and estimating: Mk II FPA (function
point analysis). John Wiley & Sons, Inc., 1991.

[9] Kan Qi and Barry W Boehm. Detailed use case points (ducps): a
size metric automatically countable from sequence and class diagrams.
In Proceedings of the 10th International Workshop on Modelling in
Software Engineering, pages 17–24. ACM, 2018.

[10] Silvia Abrahao and Oscar Pastor. Measuring the functional size of web
applications. International Journal of Web Engineering and Technology,
1(1):5–16, 2003.

[11] Anandi Hira. Alternative size metrics for software estimation. USC
CSSE, 2017.

[12] Doug Rosenberg, Barry Boehm, Bo Wang, and Kan Qi. Rapid, evolu-
tionary, reliable, scalable system and software development: The resilient
agile process. In Proceedings of the 2017 International Conference on
Software and System Process, pages 60–69. ACM, 2017.

[13] S Oligny, A Abran, and C Symons. Cosmic-ffp some results from the
field trials. In 15th International Forum on COCOMO and Software
Cost Estimation, 2000.

[14] Anandi Hira and B. Boehm. Function point analysis for software mainte-
nance. In Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, 2016.

[15] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical
software engineering cost models. IEEE Transactions on Software
Engineering, 25(4):573–583, 1999.

[16] Kan Qi, Anandi Hira, Elaine Venson, and Barry W Boehm. Calibrating
use case points using bayesian analysis. In Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, page 7. ACM, 2018.

[17] Ivar Jacobson. Object-oriented software engineering: a use case driven
approach. ACM Press;Addison-Wesley Pub, 1992.

[18] Barry Boehm and Richard Turner. The incremental commitment spiral
model (icsm): principles and practices for successful systems and
software. In Proceedings of the 2015 International Conference on
Software and System Process, pages 175–176. ACM, 2015.

[19] Philippe Kruchten. The rational unified process: an introduction.
Addison-Wesley Professional, 2004.

[20] Barry Boehm and Richard Turner. Using risk to balance agile and plan-
driven methods. Computer, 36(6):57–66, 2003.

[21] Matt Stephens and Doug Rosenberg. Design driven testing: test smarter,
not harder. Apress, 2011.

[22] Kan Qi and Barry W Boehm. A light-weight incremental effort
estimation model for use case driven projects. In Software Technology
Conference (STC), 2017 IEEE 28th Annual, pages 1–8. IEEE, 2017.

[23] R. Collaris and E. Dekker. Software cost estimation using use case
points: Getting use case transactions straight. IBM Developer, 2009.

[24] D. Bell. Uml basics: The component diagram. IBM Global Services,
2004.

[25] T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer, New York,
2001.

[26] J. Praestgaard. Permutation and bootstrap kolmogorov-smirnov tests for
the equality of two distributions. Scandinavian Journal of Statistics,
1995.

[27] Evita Coelho and Anirban Basu. Effort estimation in agile software
development using story points. International Journal of Applied
Information Systems (IJAIS), 3(7), 2012.

[28] Harold Jeffreys. An invariant form for the prior probability in estimation
problems. Proc. R. Soc. Lond. A, 186(1007):453–461, 1946.

[29] G. O Roberts, A. Gelman, and W. R Gilks. Weak convergence and
optimal scaling of random walk metropolis algorithms. The annals of
applied probability, 1997.

[30] D. Port, V. Nguyen, and T. Menzies. Studies of confidence in software
cost estimation research based on the criterions mmre and pred, 2009.

[31] T. Uemura, S. Kusumoto, and K. Inoue. Function point measurement
tool for uml design specification. In Software Metrics Symposium, 1999.
Proceedings. Sixth International. IEEE.

