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ABSTRACT
Sequence and class diagrams are widely used to model the behav-

ioral and structural aspects of a software system. A size metric

that is defined automatically countable from sequence and class dia-

grams boosts both the efficiency and the accuracy of size estimation

by producing reproducible software size measurements. To fulfill

the purposes, a size metric called Detailed Use Case Points (DUCPs)

is proposed based on the information automatically derived from

sequence and class diagrams. The automation is largely supported

by our proposed user-system interaction model (USIM) that fills

the gap between the system abstraction by the sizing model and

the metamodels of the UML diagrams. The effectiveness of our

proposed size metric in project effort estimation is validated by our

empirical study of 22 historical projects.
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1 INTRODUCTION
Effort estimation at the early stages of a project has been essential

for a variety of software management decisions. For example, with

project effort estimated, one can further estimate the schedule and

the cost of a project to avoid the risks of being over schedule or

budget. Most effort estimation models rely on a size metric as the

major effort predictor [1] [2] [3]. Therefore, to ensure the utility of
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effort estimation in decision making, it is necessary for a software

sizing model to estimate software size accurately at the early stages

of a project.

Use Case Points (UCPs) has been widely used to provide size

estimation for object oriented projects at the early stages. However,

it also has been criticized to be inaccurate for not being particularly

sensitive to the complexity of use cases [4] [5]. Besides, its manual

process of counting transactions has been the barrier for its further

use for estimating effort efficiently [6][7].

To deal with the difficulties, We define a size metric called DUCPs

based on the original UCPs, which is automatically countable from

sequence and class diagrams. The enabler of the automated count-

ing process is the proposed user-system interaction model (USIM)

that fills the gap between the sizing model’s abstraction of a sys-

tem and metamodels of sequence and class diagrams. The rules,

data structures, and algorithms to construct this abstract model are

clearly defined and elaborated. The effectiveness of the proposed

metric in effort estimation is validated by an empirical study of 22

projects.

This paper is structured as follows. In section 2, we discuss the

related work. Section 3 introduces the basic concepts. Section 4

formally defines the sizing model, the counting process of DUCPs,

and USIM. In section 5, the rules, data structures, and algorithms

adopted to support the automated procedures for model construc-

tion and size metric counting are presented. Section 6 presents

the results from the empirical study of 22 projects, and demon-

strates the effectiveness of DUCPs. Section 7 discusses the threads

to validity. Section 8 concludes the research.

2 RELATEDWORK
UML diagrams have been adopted in various approaches to sizing

software systems, for example, Predictive Object Points (POP)[8],

Class Points[9], UML Points[7], the Fast&Serious method [10], the

metrics for eServices[11]. However, compared with the size met-

rics that are defined using UML primitives, our proposed metric,

as type of functional point analysis (FPA), measures a system’s

functional size in terms of transactions, which is more theoretically

and empirically validated in terms of its ability in project effort

estimation[12][3][13] [14][15][16]. The automatedmethods for FPA

also have been widely explored. For example, Fetcke proposed an

approach to map use case model, domain object model, analysis

model to FPA’s abstraction of a software system [17]. Umeura pro-

posed the rules to count Function Points from sequence and class

diagrams[18]. However, the theoretical sizing models and the rules

that map the UML’s abstractions of a system to the sizing models

adopted in their researches are fundamentally different from our

https://doi.org/10.1145/3193954.3193955
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method. Previous researches on UCPs have been focused on classi-

fying use cases with better granularity and adjusting the weighting

schema via empirical studies to improve effort estimation accu-

racy [19][20][21][4][22][23], which rarely dealt with the inaccuracy

brought by the insufficient information available in the abstract

use case descriptions to estimating software size accurately, and

the inefficiency brought by involving human effort in the counting

process. Our approach integrates more detailed information from

sequence and class diagrams to improve the accuracy and applies

automated procedures to improve the efficiency.

3 BACKGROUND
3.1 Use Case Modeling With UML
In the context of Object-oriented Software Engineering (OOSE),

functional requirements are captured by use cases, which are mod-

eled by a UML use case model to provide high-level description

about the interactions between a system and its actors [24]. Use

cases can further be elaborated by sequence and class diagrams

if object-oriented method is applied for detailed descriptions of a

system’s structural and behavioral aspects[25] [26]. The lifecycle

of this model-based use case driven approach is presented in Figure

1. Examples of sequence diagram and class diagram are provided

in Figure 2.

To support the exchange of the modeling information, XMI is

invented and used as the standard interchangeable format for UML

models. The XMI files exported from CASE Tools can generally be

separated into two parts: < uml : Model >, which contains tagged

elements < packaдedElement > to store information about the

UML elements, and < xmi : Extention >, which is the extension

made by a CASE tool to further characterize the UML elements.

Each element is assigned with a UUID and can be referenced by

other elements through its UUID. In this paper, we exploit the

structure of the XMI files to extract relevant information that defines

the proposed user-system interaction model (USIM) to support the

automated software sizing procedures.

3.2 Use Case Points
To estimate the effort of use case driven projects, Karner developed

Use Case Points (UCPs) based on his working experience at Objec-

tory Systems [3]. Eq. (1) summarizes the four types of information

that need to be evaluated from a project to count UCPs, which in-

clude unadjusted use case weight (UUCW), unadjusted actor weight

(UAW), environmental factor (EF), and technical complexity factor

(TCF). The major effort for calculating UCPs is to count the number

of transactions of the use cases and use the number to classify the

use cases into three complexity levels in order to calculate UUCW.

After UCPs is calculated, it is multiplied by a productivity factor

(20 is suggested by the author) to estimate the project effort (in

person hours). Local calibration is encouraged by the author and

other researchers to improve the accuracy of effort estimation.

UCP = (UUCW +UAW ) ∗TCF ∗ EF (1)

Figure 1: The use case driven process and its deliverables.

4 MODEL DEFINITION
4.1 The Sizing Model
The original UCPs weights each use case by the number of its

internal transactions and uses the sum of the weighted use cases as

the size measurement of system functionality. This sizing model

can be summarized by Eq. (2).

Size =
∑
c ∈C

Wc (2)

However, as system design being further detailed by the design

and analysis activities, for example, using sequence and class dia-

grams to model a system’s behavior and structure, we are able to

understand the internal structure of an identified transaction, for

example, the activities a transaction will be implemented upon and

the data elements a transaction references. Those properties help

classify transactions into different levels of complexity, which can

be weighted differently in size estimation to represent their differ-

ent levels of difficulty in implementation, testing, and maintenance.

For this reason, we propose using the sum of weighted transactions

to achieve better granularity in software sizing, which is formalized

by Eq. (3).

Size =
∑
c ∈C

∑
t ∈c

wt (3)

This proposed sizing model models a system as a set of transac-

tions and the measurement of a system’s size requires two basic

procedures - transaction identification and classification. Concep-

tually, a transaction can be interpreted as a sequence of system

operations to realize a basic unit of a system’s functionality. A

transaction may be identified differently based on different artifacts.

In terms of sequence diagrams, a transaction (defined in Definition

1) is defined as a sequence of messages that represents a type of

user-system interaction. Such a sequence of messages can further

be modeled as the methods of the classes of the class diagrams that

describe the structure of a system. The transactions that can be

identified from the previous sequence diagram example are shown

in (c) of Figure 5.

Definition 1. (Transaction) A transaction is a sequence of mes-
sages identified from sequence diagrams, such that this sequence
fulfills a type of interaction between an actor and a system.

4.2 User-system Interaction Model (USIM)
To support the automated procedures for transaction identifica-

tion and classification, we further define a user-system interaction
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Figure 2: Examples of sequence and class diagrams.

Figure 3: Relationships between Use CaseModel, UMLmeta-
models, USIM, and the software sizing model.

model, called USIM, to synthesize the information derived from

the sequence and class diagrams based on their metamodels, and

construct this abstract model by parsing the XMI files exported

from CASE tools. The difference between USIM and the UML use

case model [24] is that the UML use case model defines user-system

interactions at the level of identifiable user actions and system

reactions (exposed by user interfaces), while USIM defines the sys-

tem reactions at the level of the operations among system com-

ponents and computationally supports the sizing model. Figure 3

summarizes the relationships between UML metamodels, Use Case

Model, the sizing model, and USIM. USIM can be denoted by a tuple

< A, PR, SB, SCP , STL,CMP >, which includes 6 types of elements

- activities (A), precedence relations (PR), system boundary (SB),
system scope (SCP ), stimuli (STL), and components (CMP ). The de-
tails of constructing an instance of USIM are elaborated in section

5.1.

4.3 The Counting Process of DUCPs
Based on the proposed software sizing model and information com-

putable fromUSIM, we define a sizemetric called DUCPs to estimate

the software size. DUCPs reuses UCPs’ approach to evaluating the

project properties, such as Unadjusted Actor Weight (UAW), En-

vironmental Factor (EF), and Technical Complexity Factor (TCF),

while it uses the automated approach to identifying and classifying

transactions. The steps of counting DUCPs are listed below:

Table 1: Transactional Complexity Levels and Weights

DET/TL 1-3 4-7 ≥8
0-10 1 (Very Low) 2 (Low) 5 (Average)

11-25 2 (Low) 5 (Average) 13 (High)

≥26 5 (Average) 13 (High) 21 (Very High)

(1) Identify the transactions from sequence diagrams for each

use case of the system.

(2) Count the transaction length (TL) and the data element types

(DETs) for each identified transaction.

(3) Determine the UnadjustedDetailed TransactionWeight (UDTW)

for each transaction according to Table 1 based on the TL

and the DETs.

(4) Calculate the UnadjustedDetailed Use CaseWeight (UDUCW)

by Eq. (4)

UDUCW =
∑
c ∈C

∑
t ∈Tc

UDTW (t) (4)

(5) Evaluate the technical complexity factor (TCF) and the envi-

ronmental factor (EF) based on the original UCPs.

(6) Calculate the DUCPs by Eq. (5).

DUCP = (UDUCW +UAW ) ∗TCF ∗ EF (5)

5 THE AUTOMATED COUNTING
FRAMEWORK

5.1 User-system Interaction Model (USIM)
Construction

5.1.1 Extracting information from XMI files. The goal for this
step is to parse the tagged elements of the XMI files into the UML

elements that are defined in the metamodels of sequence and class

diagrams and replace the associations between the tagged elements

based on their UUIDs by the references between the objects that

represent the UML elements. The UML elements can be identified
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Figure 4: The metamodel for User-system Interaction Model (USIM).

Table 2: Rules Mapping Tagged Elements to UML Elements

UML Element XMI Tag XMI Type

UMLClass <packagedElement> uml:Class

UMLAttribute <ownedAttribute> uml:Property

UMLOperation <ownedOperation> –

UMLParameter <ownedParameter> –

UMLInteraction <ownedBehavior> uml:Interaction

UMLLifeLine <lifeline> uml:Lifeline

UMLMessage <message> uml:Message

UMLOccurrence <fragment> uml:Occurrence-

Specification

UMLCombined-

Fragment

<fragment> uml:Combined-

Fragment

UMLOperand <operand> uml:Interaction-

Operand

UMLUseCase <packagedElement> uml:UseCase

by the combination of the tag and the XMI type. The rules for

mapping the tagged elements (of specific "XMI" types) into the

UML elements are presented in Table 2. The structure of XMI also

stores the information about the hierarchy of the UML elements. For

example, UMLCombinedFragment objects are recursively defined

by its inner UMLCombinedFragment and UMLOccurrence objects.

The result is an instance of the metamodels of sequence and class

diagrams presented in Figure 4, which is used to formally define a

USIM instance.

5.1.2 Control Flow Construction (A and PR). The underlying

structure of USIM is the control flow among the activities. To derive

the control flow graph, we apply a graph transformation algorithm

to abstract messages into activities and determine the precedence

relations of the activities. We call this directed graph SDCFG. To be

compatible with UML2.0 standard (in considering the different types

of fragments), Kundu proposed an algorithm that converts sequence

diagrams into control flow graphs based on XMI files, and used

extra fragment nodes (f raдmentstar t , f raдmentend ) to maintain

the semantics of the fragments [27]. In our algorithm, we adopt this

idea and use extra fragment nodes for the same purpose. However,

different from their algorithm, we use the occurrences to identify

the order of the messages, and deal with the nested fragments by

recursive processing of the fragments. Also, we eliminate those

extra fragment nodes afterwards to simplify the CFG, while keeping

the semantics of the fragments in terms of their influences on the

control flow. The algorithm of constructing SDCFG is presented in

Algorithm 1, which essentially defines the mapping (summarized

by Eq. (6)) between the messages (M) and the activities (A), and the

precedence relations (PR) among A. The SDCFG converted from

the example sequence diagram is presented in (b) of Figure 5.

msд(α) = {m |α .id =m.id &m ∈ M & α ∈ A} (6)

5.1.3 Identifying Components (CMP ). To identify the compo-

nents that implement the activities, we identify the classes (C)
from class diagrams, which model the lifelines (L) covered by the

occurrences (O) that are the "receiveEvents" of the messages cor-

responding to the activities. For each activity, we search through

the domain model by comparing the standardized names (sName)
of such lifelines with the standardized names of the classes in the

domain model, to establish the association between the class and

the activity that regards it as the component. To standardize a name,

it is first capitalized and then has the spaces removed. The practical

consideration for using the standardized names in the comparison

is to prevent the inconsistency due to using different names to
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Algorithm 1: Convert Sequence Diagram to SDCFG

Data: SD < M,L,O, F > - the sequence diagram needs to be transformed

Result: SDCFG < A, PR > - the CFG converted from the sequence diagram

1 Function constructSDCFG SD < M,L,O, F > // M:messages, L:lifelines, O:occurrences, F:fragments
2 Initialize SDCFG < A, PR, startA, endA >; preA← NULL ; // A:activities, PR:precedence relations

3 while Dequeue o1 from SD.O do
4 if o1 ∈ SD.F then // if o1 is a combined fragment
5 < A′, PR′, startA′, endA′ >← procesCombinedFragment(o1);

6 Push A′, PR′ into A, PR; push {start : preA, end : startA′} into PR if preA , NULL; preA← endA′;
7 startA← startA′ if startA = NULL;

8 else // if o1 is an occurrence
9 Dequeue o2 from SD.O and create an activity α for msgm such that o1 =m.sendEvent&o2 =m.receiveEvent&m.id = α .id ;

10 Push α into A; push {start : preA, end : α } into PR if preA , NULL; preA← α ; startA← preA if startA = NULL;

11 return < A, PR, startA, endA >;

12 Function processCombinedFragment F
13 Initialize F < A, PR, startA, endA >; initialize and push CFStart , CFEnd into A ; // CFStart, CFEnd:extra fragment nodes

14 for each operand OP of F do
15 < A′, PR′, startA′, endA′ >← constructSDCFG(SD ′ < L,M,O ′, F ′ >) ; // O ′, F ′:occurrences, fragments of OP;

16 Push < start : CFStart , end : startA′ > into PR; push A′, PR′ into A, PR; push < star : endA′, end : CFEnd > into PR;

17 if OPR is "loop" then push {start : CFEnd, end : CFStart} into PR; startA← CFStart ; endA← CFStart ;

18 if OPR is "opt" then push {start : CFStart , end : CFEnd} into PR; startA← CFStart ; endA← CFEnd ;

19 if OPR is "break" then startA← CFStart ; endA← CFStart ; // OPR:operator of F

20 else startA← CFStart ; endA← CFEnd ;

21 return < A, PR, startA, endA >;

reference the same object during the modeling process. The rule

for identifying components is summarized in Eq. (7).

cmp(α) = {c |m.receiveEvent = o & o.covered = l & l .sName

= c .sName &msд(α) =m & o ∈ O & l ∈ L & c ∈ C} (7)

5.1.4 Determining System Boundary (SB). In sequence diagrams,

actor, a special type of lifeline, is used to model the users and ex-

ternal systems. Since the activities in USIM model the receivers’

realizations of the requests sent by the senders (a message rep-

resents both the request and the realization), if the receiver of a

message is an actor, the corresponding activity is determined to be

outside of the system boundary (SB). Also, the outside activities can
be categorized by the actors they are associated with. To capture

the information of system boundary, an attribute дroup is attached

to the activities to indicate the groups the activities belong to. The

activities with дroup being "system" are the activities within the

system boundary. The rules to determine the group of an activity

and the system boundary are summarized in Eq. (8) and Eq. (9).

дrp(α) = {l .name |m.receiveEvent = o & o.covered = l &

l .isActor = true &msд(α) =m & o ∈ O & l ∈ L} (8)

Asystem = A − ∪{д ∈ G{α |дrp(α) = д} (9)

5.1.5 Defining System Scope (SCP ). We identify system scope

(SCP ) by setting the attribute isOutO f Scope of the activities as true

if they are beyond the scope. The activities that are beyond the

scope are the activities that exist in the design but need not to be im-

plemented, and the transactions are defined by the activities out of

system scope are ineffective transactions. The number of effective

transactions is considered as the functional size of a system accord-

ing to our proposed sizing model. Here we especially consider the

fragments that have the effects on the number of effective transac-

tions of a system. To identify the effective transactions, each activity

maintains an attribute called isOutO f Scope , the value of which is

determined by its f raдments attribute that maintains the informa-

tion about the fragments the activity belongs to. An activity may be

nested within multiple fragments. For example, the message corre-

sponding to the activity is located in a "loop" fragment that is nested

within an "option" fragment. In this case, the activity is tagged with

both "loop" and "option" by setting a. f raдs = [loop,option]. This
tagging process can be easily implemented during the control flow

construction process. There are 12 types of fragments an activity

can be tagged with according to UML2. Only "ignore" and "nega-

tive" fragments have the semantics that the activities need not be

implemented. Therefore, the activities that are tagged by "ignore",

"negative", or both in the f raдs attribute are determined as "out of

the scope" activities and their isOutO f Scope attribute is set true.
The rule is summarized in Eq. (10).

isOutO f Scope(α) = (”option” ∈ α .taдs | | ”neдative” ∈ α .taдs)
(10)
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Figure 5: An example of control flow graph construction
and eliminating extra fragment nodes: (a). SDCFG is con-
structed from a sequence diagram. (b). Fragment nodes are
eliminated from SDCFG. (c). Transactions are identified by
the graph traversing algorithm

5.1.6 Determining Stimuli (STL). According the definition of

transaction, a transaction represents a system’s reaction to an action

of an actor. Actors’ actions are abstracted into the stimuli (STL) of
the system, which are used as the entry nodes in the path searching

algorithm for identifying transactions. Still, since the activities

model the realizations of the requests, we first identify the responses

(RSP ) of the stimuli from the identified activities, and then create

stimulus nodes for the responses. The rules to determine responses

and create stimuli are summarized in Eq. (11) and Eq. (12).

RSP = {α |m.sendEvent = o & o.covered = l & l .isActor

= true &msд(a) =m & o ∈ O & l ∈ L} (11)

STL = ∪α ∈RSP {α ′ |α ′.rcpt = α & α ′id =m.id &m ∈ M} (12)

5.1.7 Visualizing the system interactionmodel. To visualize USIM,

we define a set of notations to denote the key elements. Figure 6 pro-

vides an example of visualizing the USIM derived from the example

sequence and class diagrams given in Figure 2.

5.2 Transaction Identification
After an instance of USIM is constructed, we apply an algorithm

based on DFS to search for the paths from the instance with cus-

tomized rules to determine entry and exit conditions to ensure a

path is a transaction. The entry nodes are the stimulus nodes (STL),

Figure 6: An example of visualizing USIM.

while the exit nodes are the nodes that are not within the system

boundary (SB) or have no succeeding nodes. The path between

a stimulus node and an exit node is output as a transaction. The

algorithm is pretty straightforward, we skip it to save the space.

5.3 Transaction Classification
The calculation of DUCPs involves the three kinds of classifications

as follows.

5.3.1 classification by use cases. Since usually a use case is mod-

eled by one or multiple sequence diagrams and this hierarchy is

preserved in the structure of the XMI files, if a transaction is identi-

fied from a sequence diagram that models a use case, it is counted

as a transaction of that use case. This information is captured by

the useCase attribute of a transaction to indicate which use case

the transaction belongs to. The transactions of a use case is defined

by Eq. (13)

Tuc = {t |t .useCase = uc} (13)

5.3.2 classification by the isOutO f Scope attribute. We employ

the isOutO f Scope attribute of the activities to identify effective

transactions, which is, if the isOutO f Scope attribute of any of the

activities within a transaction is true, the isOutO f Scope attribute
of the transaction is set true and determined as not effective. The

rule is summarized in Eq. (14).

isOutO f Scope(t) = ORα ∈t (α .isOutO f Scope = true) (14)

A transaction determined as ineffective means the transaction

is designed not to be implemented. Therefore, it will be excluded

from size estimation. The effective transactions (T ∗uc ) of a use case
is defined by Eq. (15).

T ∗uc = Tuc − ∪t ∈Tuc {t |isOutO f Scope(t) = true} (15)
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Figure 7: Project Descriptive Statistics

5.3.3 classification by complexity. Based on the structure of

the transactions identified from sequence and class diagrams, we

identify two factors that affect the effort in implementing, testing,

and maintaining a transaction - transaction length (TL) and data

element types (DETs), which are formally defined in Definition 2

and Definition 3.

Definition 2. (TL) Transaction length is defined as the number
of activities that realize a transaction, which models the procedural
complexity of a transaction.

Definition 3. (DET) A data element type is defined as an identifi-
able elementary type of data that is referenced by a transaction, which
models an input or an output during the processing of a transaction.

Counting TL is straightforward based on the transactions iden-

tified by our method. It is the length of the path identified by the

graph traversing algorithm. For the two effective transactions given

in (c) of Figure 5, the TLs are 4 and 3 respectively.

DETs of a transaction is counted as the total number of the pa-

rameters and return variables of the methods of the classes that rep-

resent the components of the transaction’s activities. For example,

if a method corresponding to an activity α1 has P(α1) different pa-
rameters and 1 return variable, the DETs for this message is counted

as P(α1) + 1. If a transaction contains n such activities, the DETs

of the transaction is counted as

∑
i ∈n (P(ai ) + 1) =

∑
i ∈n P(ai ) + n.

For the two effective transactions given in (c) of Figure 5, the DETs

are 5 and 3 respectively.

Based on TL and DETs, transactions are classified into five levels

of complexity and weighted differently by Table 1 to represent their

relative influences on software size. The influences are generally

agreed to be non-linear[1]. Here, we assign the weights based on Fi-

bonacci sequence, which is similarly used in Story Points. Therefore,

UDTW can be calculated by Eq. (16)

UDTW (t) =
∑
t ∈T ∗uc

w(TL(t),DETs(t))
(16)

Table 3: SE, T-values, P-values for the Parameters

Parameter est. std. error t-value p-value

β0 11.57 147.37 0.08 0.94

β1 3.14 0.50 6.33 0.36e-05

6 MODEL CALIBRATION AND EVALUATION
6.1 Data Collection
22 projects were collected from master-level software engineering

courses to apply the counting method of DUCPs and that of UCPs.

The projects are either about developing web applications or mobile

applications, which range from 1-9 KSLOC. The empirical study

was done by applying the proposed automated approach to the

artifacts collected from those projects. The distributions of the

project characteristics are presented in Figure 7.

6.2 Model Calibration
We first calculated the correlation efficient (r ) between DUCPs and

project effort (in person-hours) to understand if linear relationship

exists between them. The value of r being 0.67 certifies the existence
of the linear relationship. Also, the result from the hypothesis test on

β1 (the p−value being close to 0, given in Table 3) suggests that the

linear relationship between the size metric and effort is significant.

After that, least squares regression is applied to calibrate the specific

effect a unit of DUCPs has on project effort. The calibrated results

are presented in Table 3, which suggests that one unit of DUCPs

is about 3.14 person-hours, while on average there is an overhead

of 11.57 person-hours for use case driven approach of software

engineering - the part of effort that is not related to developing,

modifying, or testing any use case.

6.3 Model Evaluation
To evaluate the performance of DUCPs, a comparison between

DUCPs and the original UCPs was conducted in terms of the out-of-

sample effort estimation accuracy, for which 5-fold cross validation

was performed by separating the 22 data points into 5 folds. Specif-

ically, 5 runs of model training and testing were conducted, and

the average of the testing results of the 5 runs was used as the

estimate of the effort predication accuracy. In each run of cross

validation, 4 subsets (17-18 data points) are used as the training

data set to calibrate both UCPs and DUCPs models, and 1 subset

(4-5 data points) is used as the testing dataset to calculate MMRE,

PRED(.15), PRED(.25), PRED(.50), which are the commonly used

metrics to evaluate prediction accuracy for effort estimation models

[1] [28]. Both MMRE and PRED rely on the quantity called magni-

tude relative error (MRE) defined by Eq. (17). MMRE measures the

sample mean of MRE, while PRED(x) measures the percentage of

MRE within x . The results are presented in Table 4. In summary,

DUCPs is about 21% better for MMRE, 14% better for PRED(.15),

14% better for PRED(.25), and 15% better for PRED(.50), than UCPs.

MRE =
|y − ŷ |
y

(17)
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Table 4: MMRE, PRED(.15), PRED(.25), PRED(.50) for 5-fold
Cross Validation

DUCPs UCPs

Run M. P.(.15) P.(.25) P.(.50) M. P.(.15) P.(.25) P.(.50)

1 0.45 0.00 0.20 0.60 0.61 0.00 0.20 0.60

2 0.19 0.25 0.75 1.00 0.56 0.00 0.50 1.50

3 0.30 0.25 0.25 1.00 0.57 0.00 0.00 0.75

4 0.37 0.25 0.50 0.50 0.59 0.25 0.50 0.50

5 0.21 0.20 0.60 1.00 0.28 0.00 0.40 1.00

Avg. 0.31 0.19 0.46 0.82 0.52 0.05 0.32 0.67

7 THREADS TO VALIDITY
Since, as shown in Figure 7, the studied projects are considered

small projects for the sizes range from 1-9 KSLOC and they were

done with 5-8 team members, the results of the accuracy evaluation

presented in this paper may not be directly applicable to larger

projects. Also, in the five-fold cross validation, only 4-5 data points

were used as the testing dataset. More data points for testing are

desirable to make the conclusion about the estimation accuracy

and the superiority of DUCPs over UCPs.

8 CONCLUSIONS
To summarize, we first propose a software sizing model that is

applicable to use case driven projects. Based on the sizing model, a

size metric called DUCPs is defined, which sizes software in better

granularity and efficiency by adopting the automated approaches of

identifying and classifying transactions. To facilitate the automated

procedures, we formally define a user-system interaction model,

called USIM, to bridge the gap between the sizing model and the

metamodels of sequence and class diagrams. The rules, data struc-

tures, and algorithms to construct this abstract model are clearly

defined and explained. The significance of USIM is its potential of

abstracting other types of UML diagrams, for example, activity dia-

grams, object analysis diagrams, state machines, etc, and integrate

them into our evaluation paradigm. This would be a major direc-

tion for your future study. Also, the empirical study of 22 projects

showed DUCPs outperforms the original UCPs 21% for MMRE, 14%

for PRED(.15), 14% for PRED(.25), and 15% for PRED(.50) in the

out-of-sample test. However, due to the nature of the collected data

points used in the empirical study, further application to other soft-

ware development environments, for example, to larger projects

with more team members, requires local calibration with the data

points representative for the specific environments. Therefore, to

collect more data to further prove and improve the effectiveness of

the size metric is another major direction of the research.
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