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Abstract—Use case analysis has been widely adopted in mod-
ern software engineering due to its strength in capturing the
functional requirements of a system. It is often done with a
UML use case model that formalizes the interactions between
actors and a system in the requirements elicitation iteration,
and with architectural alternatives explored and user interface
details specified in the following analysis and design iteration. On
the other hand, to better support decision making in software
management, effort estimation models are required to provide
estimates about the required project effort at the very early
stage of a project, which, however, provides little information for
accurately evaluating system complexity. To solve this dilemma,
an incremental approach of integrating information available
throughout the early iterations to provide multiple effort es-
timations is preferred in keeping the balance between utility
and accuracy. In this paper, we proposed an effort estimation
model that incorporates two sub-models to provide two points of
effort estimation during the early iterations of a use case driven
project. Our proposed model is lightweight due to the fact that
its size metrics are defined to be countable directly from the
artifacts of the early iterations. To better calibrate the model,
especially in considering the situation of having limited data
points available, we also introduced a normalization framework
in our model calibration process to reduce noise from the effort
data. By calibrating the proposed sub-models with the data points
collected from 4 historical projects, we demonstrated that the
sub-models fit the data set well, and the later-phase model is
superior to the early-phase model for it fits the data set better
and shows less uncertainty in the calibrated parameters.

Index Terms—effort estimation, use case analysis, use case
driven process, model calibration, data normalization, software
size metrics, model-based analysis, incremental estimation model,
use case points, function points, unified modeling language,
object-oriented modeling, project management, automated anal-
ysis

I. INTRODUCTION

Effort estimation models have been playing an important
role in making software management decisions. For example,
with project effort estimated, one can further estimate the
schedule or the cost for a project to avoid the risks of being
over schedule or budget [1]. To ensure its utility in decision
making, it is necessary for an effort estimation model to pro-
vide estimates at the early stage of a project, which, however,
provides little information for accurately evaluating system
complexity. As is often the case, system designs are gradually
made more detailed as a project proceeds and the more detailed
designs provide more information to size a project. In the

context of use case driven development, system behavior is
incrementally elaborated by analysis and design activities [2]–
[4]. With the information revealed in these activities, we
are able to define more fine grained size metrics to better
estimate the system complexity, which can further be used
as predictor variables to estimate project effort. The well-
known example of incrementally integrating information for
effort estimation is the COCOMO II’s early design model and
post architecture model [1], [5], which provides two points of
estimation throughout a project and promises better accuracy
in the latter. In comparison with the COCOMO II’s approach
that uses delivered source instructions (DSI) as the size metric,
we defined the size metrics based on the artifacts of a use case
driven project.

Requirements elicitation has been a longstanding topic for
software engineering, and use case analysis has got widely
adopted due to its strength in capturing the functional require-
ments. To be specific, use cases can be formally written as use
case narratives to describe the interactions between actors and
a system. A use case narrative includes the name or id of the
use case, a brief description, pre-conditions, post-conditions,
basic flow, and alternative flows. The basic flow of events
models the interactions between an actor and a system for the
sunny day scenario, and the alternative flows are created to
model the rainy day scenarios. The logical interconnection of
the basic flow and the alternative flows can be represented by
structured scenarios. Each event of the basic flow is indexed
by a step number, and each alternative flow is separated from
the basic flow at certain step to represent a rainy day scenario
or exceptional scenario, and then rejoins the basic flow after
taking actions on the alternative conditions. An example of
structured scenario is given in TABLE I. In the context of
Model Based Engineering (MBE), use cases are captured with
a UML use case model [4], [6], [7], and can further be
described in detail by use case diagrams, robustness diagrams,
sequence diagrams, activity diagrams, and class diagrams.
Also, the structured scenarios can be automatically converted
into activity diagrams by CASE1tools, for example, Enterprise
Architect [6].

In our incremental approach of effort estimation, we fol-
lowed the typical deliverable model of the use case driven

1CASE: Computer-aided software engineering



TABLE I
AN EXAMPLE OF STRUCTURED SCENARIO

Step Action of Basic Path

1 System displays welcome screen
2 User inserts a debit card
3 System prompts for PIN
4 User enters correct PIN
5 System authenticates user and logs access info
6 System prompts options
7 User selects balance option
8 System displays current account balance
9 System displays welcome screen after 3 seconds

Step Alternative Path Join

2a Invalid Card 1
4a Incorrect PIN 1

process, which is depicted in Fig. 1 [8]. The proposed size
metrics rely on the deliverables of the requirements elicitation
iteration (iteration II) and the analysis and design iteration
(iteration III). For iteration II, we defined a size metric called
Early Use Case Points (EUCP) that weights each use case
with the number of scenarios identified from the structured
scenarios, and uses the sum of the weights to calculate the
total Unadjusted Early Use Case Weight (UEUCW). With
the calculated UEUCW and the ratings for Unadjusted Ac-
tor Weight (UAW), Technical Complexity Factor (TCF), and
Environmental Factor (EF), which are defined in the original
Use Case Points (UCP) definition, EUCP is calculated and
used to calibrate a linear model with project effort data to
provide a first-order estimation of project effort. We will
denote the sub-model for this iteration as ModelEUCP or
ModelI in the rest of the paper. In iteration III, architectural
solutions are introduced to implement the required functions,
and also user interface specifications are largely captured by
UI prototypes or storyboards [2], [4], [8]. We specifically
take into consideration the UI complexity when defining the
size metric at this iteration, due to the fact that UI design
and refinement have become a major source of project effort
for application and information system development. More
specifically we defined a size metric called Extended Use Case
Points (EXUCP) for this iteration, which uses the number
of domain elements and UI elements that each identified
transaction interacts with to reflect its internal complexity.
Using EXUCP as the size metric, we calibrated the second
linear model (ModelEXUCP ) to provide effort estimation for
better accuracy (ModelEXUCP is also denoted as ModelII
for simplicity). To summarize, the major contributions we
made in this paper are as follows:

1) Proposed an effective size metric called Early Use Case
Points (EUCP) as the early stage size metric.

2) Proposed a more precise size metric called Extended
Use Case Points (EXUCP) as the later stage size metric,
which considers the structural complexity and the UI
complexity of the identified transactions.

Fig. 1. Use Case Driven Flow-Down Chart

3) Proposed a normalization framework to reduce the un-
explainable portion of variation within effort data.

4) Conducted an empirical study on 4 historical projects to
demonstrate that the linear relationships exist between
the proposed size metrics and project effort, and also
ModelII is superior to ModelI .

The rest of the paper is structured into 7 sections. In the
following section, we introduced several related studies that
are fundamental to our study, and also discussed the reasons
why some related works are inadequate to provide the values
our approach promises. In section III, we first summarized the
principles that we followed in order to deliver the promised
values, and then introduced the size metrics and their counting
methods. In section IV, a normalization framework based
on COCOMO II is introduced to eliminate the portion of
variation from the effort data, which is attributable to the un-
modeled factors. In section V, the model calibration process is
introduced through an empirical study of four student projects,
and the proposed effort estimation model is calibrated through
ordinary least squares linear regression. In section VI, the
quality of the model is assessed with respect to goodness of fit
and significance of the estimated parameters. In section VII,
we summarized our approaches in dealing with the challenges,
applicability of our approach and the calibrated models, and
also the future directions of this study.

II. RELATED WORKS

To achieve the goal of estimating project effort at the early
stage of a project, parametric effort estimation models use
software size and other relevant aspects of a project to model
the sources of project effort, and the effects of the factors are
calibrated through empirical data, a well-known example of
which is COCOMO II [1]. An accurate effort estimation by
COCOMO II requires an accurate estimation of software size
in terms of Delivered Source Instructions (DSI). However, as



the common practice of a use case driven approach suggests,
it’s more focused on modeling the system behavior at an
abstract level at the early stage of a project [3], [4], [8],
which makes it difficult for use case driven projects to gather
information about software size in terms of DSI.

There also exist several size metrics focused on measuring
software size by analyzing system behavior. For example,
Use Case Points (UCP), first conceived by Gustav Karner,
measures software size through use cases [9], and Function
Point (FP) analysis, developed by Allan Albrecht, computes
functional size measurement (FSM) of software [10], [11].
However, their proposed size metrics are either at high level
that doesn’t reflect system complexity with the required pre-
cision to guarantee effort estimation accuracy, or at low level
that requires substantial effort to gather information about data
functions and transaction functions in the counting process. To
deal with this dilemma, an incremental approach of integrating
information that is gradually made available at different phases
provides a good balance between utility and accuracy. This
follows our idea of extending the existing UCP technique
to accommodate the information that is available at different
phases of use case driven projects.

Several studies of extending the existing UCP counting
method have been proposed to improve use case classification
accuracy. For example, Periyasamy and Ghode proposed an
extended version of UCP called e-UCP [12] that redefined
use case and actor classifications and their associated weights
by taking into account the information about input parameters,
output parameters, pre-condition, post-condition, and success-
ful and exceptional scenarios within use case narratives when
measuring software size. Another revision of UCP is done
by Mudasir Manzoor Kirmani and Abdul Wahid called Re-
UCP [13], in which one extra rating level - ”critical”- is
added in both the use case and actor weighting schemes,
and ”scalability” and ”project methodology” are added as the
14th technical complexity factor and 9th environmental factor.
These methods of customizing the original UCP technique are
majorly for the purpose of improving use case classification
accuracy. However, in addition to accuracy, we also aimed to
improve efficiency of the counting process to avoid investing
too much effort in gathering information for size estimation.

A practical difficulty prevents one from creating accurate
effort estimation models is the noise within effort data, which
is because the effort data is usually collected from high
dimensional uncontrolled environments. Noise may take the
leading effect on the calibrated parameters especially when
available data points are limited. To deal with the situation,
measures of identifying the sources of noise and removing
the unexplainable variation from effort data are required [14],
[15]. In this paper, we proposed a normalization framework to
eliminate the influences from the un-modeled factors whose ef-
fects on the effort, however, have been modeled by COCOMO
II. By calibrating the models using the normalized effort data,
we are able to reveal more plausible relationships between our
proposed metrics and project effort.

III. MODEL DEFINITION

A. Design Principles

To ensure the values our proposed effort estimation models
promise, we followed the following design principles:

1) Taking size measurements for effort estimation at the
early stage of the process ensures utility of the estimates:
As described in Fig. 1, through iteration II and iteration III,
functional requirements, UI specifications, and architectural
solutions are well understood. These two iterations usually
happen at the early stage of a project, and largely define the
scope of the entire project. For this reason, we focused on
taking size measurements from these two iterations of a use
case driven project.

2) Incrementally integrating information available through-
out the iterations increases the precision in measuring system
complexity: In iteration II, EUCP measures use case com-
plexity by the number of scenarios identified from structured
scenarios. While, in iteration III, EXUCP takes into considera-
tion domain elements and UI components to reflect the internal
complexity of each identified transaction.

3) Having the size metrics defined to be countable directly
from the artifacts improves efficiency of the counting pro-
cess: To avoid the situation of investing too much effort in
buying information for effort estimation, EUCP and EXUCP
are directly countable from the artifacts of iteration II and
iteration III. This makes it possible to develop automated
counting techniques to measure software size. Semi-automated
approaches are suggested in the section of introducing the
counting methods. Complete automation is also possible if
requirements analysis and modeling activities are all done with
a CASE tool.

B. Size Metrics and Counting Methods

1) Early Use Case Points: Early Use Case Points reuses
the weighting schemes of UCP for unadjusted actor weight
(UAW), technical complexity factor (TCF) and environmen-
tal factor (EF), however, it adopts a different approach of
measuring use case complexity. Specifically, the number of
transactions of a use case is counted as the number of
scenarios, which can also be automatically computed as the
cyclomatic complexity of the activity diagram converted from
the structured scenarios. Based on the number of scenarios,
a weight is assigned to the use case to reflect its complexity.
The steps of counting EUCP is introduced below:

1) Extract structured scenarios from use case narratives.
2) Convert structured scenarios to activity diagrams. Step

1 and step 2 can be automated, as introduced in [6] with
Enterprise Architect.

3) Count the cyclomatic complexity (CC) for the converted
activity diagrams. This step can either be manually
conducted or automated, for example, using a script to
parse the activity diagrams with Enterprise Architect.

4) Determine the use case complexity for each identified
use case according to TABLE II and calculate the
Unadjusted Early Use Case Weight (UEUCW) by (1),



TABLE II
UNADJUSTED EARLY USE CASE WEIGHT

Use Case Complexity CC Weight

Simple 1-3 5
Average 4-7 10
Complex ≥8 15

TABLE III
UNADJUSTED ACTOR WEIGHT

Classification Type of Actor UAW

Simple External system that must interact
with the system using a

well-defined API

1

Average External system that must interact
with the system using standard
communication protocols (e.g.
TCP/IP, FTP, HTTP, database)

2

Complex Human actor using a GUI
application interface

3

where Csimple, Caverage, and Ccomplex represent the
sets of use cases that are determined as simple, average,
and complex respectively.

UEUCW = 5 ∗ Csimple + 10 ∗ Caverage + 15 ∗ Ccomplex (1)

5) Calculate Unadjusted Actor Weight (UAW) by (2) based
on the weights assigned to the identified actors. The
weight for each identified actor is determined by its
type according to TABLE III. Here we reused the actor
classification weights from the original Use Case Points
definition [16].

UAW = 1 ∗Asimple + 2 ∗Aaverage + 3 ∗Acomplex (2)

6) Calculate the Technical Complexity Factor (TCF) based
on the sum of the impact (denoted as TFactor) of the
13 technical factors given TABLE IV by (3). Here we
reused the technical factor weighting scheme and the
impact calculation method from the original Use Case
Points definition [16].

TCF = 0.6 + (TFactor/100) (3)

7) Evaluate the Environmental Factor (EF) based on the
sum of the impact (denoted as EFactor) of the 8 environ-
ment factors given TABLE V by (4). Here we reused the
environmental factor weighting scheme and the impact
calculation method from the original Use Case Points
definition [16].

EF = 1.4 + (−0.03 ∗ EFactor) (4)

8) Calculate the adjusted Early Use Case Points (EUCP)
by (5).

EUCP = (UEUCW + UAW ) ∗ TCF ∗ EF (5)

TABLE IV
TECHNICAL COMPLEXITY FACTOR

Factor Description Weight

T1 Distributed system 2
T2 Response time/performance objectives 1
T3 End-user efficiency 1
T4 Internal processing complexity 1
T5 Code reusability 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portability to other platforms 2
T9 System maintenance 1
T10 Concurrent/parallel processing 1
T11 Security features 1
T12 Access for third parties 1
T13 Special user training facilities 1

TABLE V
ENVIRONMENTAL FACTOR

Factor Description Weight

E1 Familiarity with development process used 1.5
E2 Application experience 0.5
E3 Object-oriented experience of team 1
E4 Lead analyst capability 0.5
E5 Motivation of the team 1
E6 Stability of requirements 2
E7 Part-time staff -1
E8 Difficult programming language -1

2) Extended Use Case Points: In iteration III, as archi-
tectural alternatives are explored and UI specifications are
captured using UI prototypes or storyboards, we are able to
identify the domain elements (DE) and UI elements (UIE)
involved in the transactions of a use case, and use the number
of DE and the number of UIE to reflect a transaction’s internal
complexity. To be specific, domain elements are the real-world
concepts needed to be modeled in the system, which incorpo-
rate both behavior and data to realize the system transactions,
and the number of DE a transaction involves measures the
number of system components a developer needs to deal with
when implementing a transaction. Also the number of UIE a
transaction involves is used to reflect its independent effect on
the effort for implementing the transaction. These numbers can
be counted from sequence diagrams, or from a more concise
presentation - robustness diagrams. Usually one use case is
modeled by one sequence diagram or one robustness diagram
[4], [6]. In the case of using robustness diagrams to model use
cases, the method to count EXUCP is introduced below:

1) Identify the transactions from the robustness diagram
that models a use case. This process can be automated
with a script to count the independent paths from the
XML files exported from CASE tools, for example,
Enterprise Architect. Each identified independent path
represents a transaction.



TABLE VI
TRANSACTIONAL COMPLEXITY LEVELS BY EXUCP

UIE\DE 1-3 4-7 ≥8

0-1 Low Low Medium
2-5 Low Medium High
≥6 Medium High High

TABLE VII
UNADJUSTED TRANSACTION WEIGHT

Complexity Level UEXTW

Low 1
Medium 2

High 5

2) Count the number of UI elements (UIE) involved within
each identified transaction. In the case of using robust-
ness diagrams to model use cases, it is the number
of identifiable user interface components within the
”boundary” elements of a path representing a transac-
tion.

3) Count the number of domain elements (DE) involved
within each identified transaction. In the case of using
robustness diagrams to model use cases, it is the number
of the nodes on a path that represents a transaction.

4) Evaluate the complexity level for each transaction by
UIE and DE according to TABLE VI.

5) Assign Unadjusted Transaction Weight (UTW) for each
transaction according to the complexity level evaluated
at step 4 and TABLE VII.

6) Calculate Unadjusted Extended Use Case Weight (UEX-
UCW) by (6), where C denotes the set of identified use
cases and Tc represents the set of identified transactions
for a use case c ∈ C.

UEXUCW =
∑
c∈C

∑
t∈Tc

UTW (t) (6)

7) Reuse the evaluations for technical complexity factor
(TCF) and environmental factor (EF) from ModelI to
calculate EXUCP by (7).

EXUCP = (UEXUCW +UAW ) ∗TCF ∗EF (7)

2PREC: Precedentedness
3RESL: Architecture/Risk Resolution
4PMAT: Process Maturity
5TEAM: Team Cohesion
6FLEX: Development Flexibility
7RELY: Required Software Reliability
8DATA: Database Size
9CPLX: Product Complexity
10RUSE: Developed for Reusability
11DOCU: Documentation Match to Life-Cycle Needs
12TIME: Execution Time Constraint

TABLE VIII
FACTOR COVERAGE BY UCP OVER COCOMO II

COCOMO II
Cost Drivers

UCP Complexity
Factors

Explained by
ModelI or
ModelII?

PREC2 No
RESL3 No
PMAT4 E1 Yes
TEAM5 E5 Yes
FLEX6 No
RELY7 No
DATA8 No
CPLX9 T4 Yes
RUSE10 T5 Yes
DOCU11 No
TIME12 T2 Yes
STOR13 No
PVOL14 No
ACAP15 E4 Yes
PCAP16 E3 Yes
PCON17 E7 Yes
APEX18 E2 Yes
PLEX19 No
LTEX20 E8 Yes
TOOL21 No
SITE22 No
SCED23 No

IV. EFFORT DATA NORMALIZATION

Due to the fact the effort data of software projects are usu-
ally collected under high dimensional uncontrolled environ-
ments, a portion of the variation within effort data may come
from certain environmental factors that are not considered by
the models. A portion of the variation may be eliminated with
appropriate modeling. This aspect of the effort data becomes
more important to consider especially when one doesn’t have
sufficient data points to rely on to eliminate the outliers. With
that being said, the essential goal for this section is to eliminate
the portion of the variation in effort data, which is caused by
the factors that are not explicitly modeled.

A. Identify Un-modeled Factors

To identify the sources of influence on project effort, we
used COCOMO II’s cost drivers, for the reason that the 5 scale
factors and the 17 effort multipliers COCOMO II incorporates

13PLEX: Platform Experience
14STOR: Main Storage Constraint
15PVOL: Platform Volatility
16ACAP: Analyst Capability
17PCAP: Programmer Capability
18PCON: Personnel Continuity
19APEX: Applications Experience
20LTEX: Language and Tool Experience
21TOOL: Use of Software Tools
22SITE: Multisite Development
23SCED: Required Development Schedule



comprehensively evaluate the product, platform, personnel,
project aspects of a software project [1] and the ratings have
been practically proven to be the effective estimates of the
magnitudes of their multiplicative or exponential effects on
project effort. On the other hand, Use Case Points also evalu-
ates projects based on a set of project characteristics, and the
corresponding ratings of those project characteristics reflect
how much the characteristics can influence project effort. To
be specific, Use Case Points provides 13 technical factors
and 8 environmental factors, as shown in TABLE IV and
TABLE V. However, after examining the project evaluation
factors defined in UCP against COCOMO II’s cost drivers,
we found that certain aspects of a project that are considered
in COCOMO II are not modeled by Use Case Points, and
those aspects are summarized in TABLE VIII.

To formally describe this observation, the model coverage
C(M) of an effort estimation model M is defined as the
subset of the project characteristics defined in model M , such
that, for ∀c ∈ C(M), c is identical or correlated with a cost
driver in COCOMO II: cdriver∈Ccocomo, where Ccocomo =
{SF1, . . . , SF5} ∪ {EM1, . . . , EM17}. {SF1, . . . , SF5} are
the 5 scale factors and {EM1, . . . , EM17} are the 17 effort
multipliers defined in COCOMO II. By this definition, since
EUCP and EXUCP use the same set of project characteristics
as UCP, C(MUCP ) = C(MEUCP ) = C(MEXUCP ), which
means C(MUCP ) is the set of COCOMO II cost drivers
that are covered by both MEUCP and MEXUCP , and T =
Ccocomo − C(MUCP ) represents the subset of COCOMO II
cost drivers that are not covered by any of the two models. In
other words, for ∀cdriver ∈ T , cdriver is a source of variation
in the effort data, which is explainable by COCOMO II but
unexplainable by the proposed size metrics, and we use this
set of cost drivers T = S̃F ∪ ẼM in normalization formula
(8) to normalize actual effort data.

B. Normalization Formula

The normalization function is formulated by (8), which is
derived from COCOMO II’s post architecture model [3]. Let
T be the set of cost drivers covered by none of the proposed
estimation models, ẼM be the set of effort multipliers, and
S̃F be the set of scale factors in T . Then, the normalized
effort Effortnorm is defined by (8).

Effortnorm =
Effortactual∏|ẼM |

i EMi ∗KSLOC0.01∗(
∑|S̃F |

i ∆SFi)

= snorm ∗ Effortactual
(8)

, where ∆SFi = SFi − SFi, SFi represents the nominal
value for SFi, and snorm represents the calculated scaling
factor

20UEUCW: Unadjusted Early Use Case Weight
21UEXUCW: Unadjusted Extended Use Case Weight
22UAW: Unadjusted Actor Weight
23TCF: Technical Complexity Factor
24EF: Environmental Factor

TABLE IX
COUNTING RESULTS FOR THE 4 SAMPLE PROJECTS

Project UEUCW UEXUCW UAW TCF EF

BDR 125 62 14 1.14 1.21
PCS 200 132 8 1.06 1.03
LBA 370 270 12 1.12 1.32
TIKI 95 34 3 1.18 1.24

TABLE X
RATINGS FOR THE UN-MODELED FACTORS

CDR LBA PCS BDR TIKI

PREC L N N N
RESL H H H N
FLEX N N N N
RELY H N H N
DATA N H H N
DOCU H H H H
STOR N N N N
PVOL N N N N
PLEX N N H N
TOOL N N H N
SITE N N N N
SCED N N N N

KSLOC 21.34 6.81 4.71 3.12

Eactual(PH) 3680 2016 1392 737
snorm 0.82 0.85 0.91 0.90

Enorm(PH) 3029.65 1711.80 1270.21 663.96

V. MODEL CALIBRATION
A. Empirical Data

Four projects from USC’s software engineering courses
CSCI 577 and CSCI 590 - Location-based Advertising Plat-
form (LBA, 2014-2015), Picshare (PCS, 2016), Bad Driver
Report Platform (BDR, 2016), and Tiki Man Go (TIKI, 2017)
- are selected to apply EUCP and EXUCP counting methods.
They are either about developing web applications or mobile
applications ranging from 3 - 21 KSLOC. The empirical study
was done by examining the artifacts from these projects. The
counting results are presented in TABLE IX.

B. Effort Data Normalization and Its Results

By applying the normalization equation (8) on the actual
effort Eactual based on the ratings provided in TABLE X for
the un-modeled cost drivers in T , we derived the normalized
effort for the four sample projects. The interpretation of the
normalized effort is, if the project is done under the nominal
conditions of the un-modeled cost drivers in T , the expected
effort would be PMnorm.

C. Calibrated Results with Normalized Data

Based on the counting results of EUCP and EXUCP (pre-
sented in TABLE XI) and the normalized effort data, we cali-
brated the two proposed effort estimation models respectively
by ordinary least squares linear regression. The calibrated
parameters are presented in TABLE XII and Fig. 2.



TABLE XI
EUCP, EXUCP, ACTUAL EFFORT, AND NORMALIZED EFFORT FOR THE 4

SAMPLE PROJECTS

Project EUCP EXUCP PHactual PHnorm

BDR 191.74 104.83 1392 1270.21
PCS 227.09 152.85 2016 1711.80
LBA 564.75 416.91 3680 3029.65
TIKI 143.39 54.14 737 663.96

TABLE XII
CALIBRATED PARAMETERS WITH NORMALIZED EFFORT

Model β0 β1

I 244.68 5.06
II 558.01 6.10

Fig. 2. Calibrated Linear Models with Normalized Effort Data

D. Estimation Result Interpretation and Applicability

Since the models are calibrated by normalized effort data,
the effort estimated by the calibrated models can be interpreted
as the expected effort for a project done under the nominal
conditions of the un-modeled cost drivers in T . One can
further estimate the multiplicative and exponential effects of
the un-modeled cost drivers in T on project effort by rating
the cost drivers according to the actual situation of a project,
and then applying the estimates on top of the model-estimated
effort to yield more accurate estimation. For example, if an
effort estimate given by ModelEUCP is t person-hours, we
understand that this result is estimated under the nominal
condition of platform volatility (PVOL), while if the actual
rating of PVOL for the project is high, we can further adjust
the estimated result t by multiplying the value for the high
rating of PVOL according to COCOMO II. As a result,
integrating the knowledge about the effect of PVOL on project
effort from COCOMO II helps achieve more accurate effort
estimation. As for the applicability of the calibrated models
presented in TABLE XII, since the projects used in calibration
as data points are majorly domain-specific as web or mobile
applications, and the data points are minimal for the purpose
of demonstrating calibration process and show certain degree
of linear relationships between the metrics and the effort,
local calibration is recommended if one wants to get accurate
estimation for a specific setting of software development.

TABLE XIII
MMRE, PRED (25%), AND R-SQUARED FOR ModelI AND ModelII

Model MMRE PRED (25%) R2

I 17.9% 75% 0.933
II 13.7% 75% 0.964

TABLE XIV
SE, T-VALUES, P-VALUES FOR INTERCEPTS AND SLOPES

Model β0 β1

SE25 t-v26 p-v27 SE t-v p-v

I 313.92 0.779 0.517 0.960 5.266 0.034
II 192.25 2.903 0.101 0.837 7.286 0.018

VI. MODEL EVALUATION

We first evaluated the goodness of fit with the statistics: R-
squared (R2), mean magnitude of relative error (MMRE), and
percentage relative error deviation of 25% (PRED (.25)), and
then tested significance of the linear relationships between the
two proposed size metrics and project effort with hypothesis
tests on the slopes (β1) of the linear models.

A. Evaluation of Goodness of Fit

As shown in TABLE XIII, the linear models explain the
variance of effort data very well with respect to the high
values of R-squared (R2). Originally, MMRE and PRED
are calculated using a testing data set to prove a model’s
estimation accuracy. However, due to the limited number of
data points available, MMRE and PRED are calculated using
the training data set to evaluate goodness of fit instead of
estimation accuracy. To evaluate the goodness of fit of the
calibrated models, we adopted the criteria commonly used in
evaluating effort estimation models - MMRE being less than
25% and PRED (.25) being greater than 75% [17]. As the
results presented in TABLE XIII, the MMRE values of 17.9%
and 13.7% for ModelI and ModelII suggest the proposed
models fit the data well, for the reason that, on average, the
absolute errors are with 25% of the actual values. The values
of PRED (.25) lead to the same conclusion for the absolute
errors for both the models are within 25% of the actual values
for 75% of the time.

B. Hypothesis Tests for the Slopes

As provided in TABLE XIV, the p-values for the slopes
of the linear models - ModelI and ModelII - are 0.034 and
0.018 respectively, for which we reject the null hypothesis h0 :
β1 = 0 for both the models, regarding the commonly adopted
significance level of 5% in statistical hypothesis testing, which
means linear relationships between the proposed size metrics
and normalized effort are significant.

25SE: Standard Error
26t-v: t-value
27p-v: p-value



C. Model Comparison

In comparison, ModelII is superior to ModelI , in terms
of its lower MMRE value and higher R-squared value, both
of which indicate ModelII fits the data set better. Also the
estimated standard errors for the slope and the intercept of
ModelII are both lower than the parameters of ModelI ,
which means ModelII has less uncertainty in the estimated
parameters. However, to draw a conclusion on the superiority
of ModelII over ModelI in terms of estimation accuracy with
certain degree of confidence requires more data points to be
collected.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed two size metrics based on the
information available at the early stage of a use case driven
project - the requirements elicitation iteration and the analysis
and design iteration. We further introduced a framework to
eliminate unexplainable variation in the effort data by normal-
izing the influences from the un-modeled factors, while the
magnitudes of the influences are understood from COCOMO
II. Also, to demonstrate the model calibration process and the
effectiveness of the proposed metrics in estimating project
effort, we applied the proposed counting methods and the
normalization framework on four student projects to derive
the data points for OLS linear regression. The preliminary
calibration results have shown that the calibrated models fit
the data set well. We further argued that ModelII is superior
to ModelI in terms of the goodness of fit and the uncertainty
in the estimated parameters. To further evaluate the estimation
accuracy, the models need to be tested with an independent
testing data set. To make a conclusion about the superiority
of ModelII over ModelI in terms of estimation accuracy
with certain degree of confidence also requires more data
points. For those reasons, future work will be focused on
collecting more data points. Also the whole framework of
taking measurements from the relevant artifacts, normalizing
effort data, and training and testing the models need to be
streamlined by a suite of software tools. This will improve
the efficiency of the model calibration process.
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